Newer
Older
/*
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/cascade/Cascade.h>
#include <corsika/environment/Environment.h>
#include <corsika/environment/LayeredSphericalAtmosphereBuilder.h>
#include <corsika/process/ProcessSequence.h>
#include <corsika/process/StackProcess.h>
#include <corsika/process/energy_loss/EnergyLoss.h>
#include <corsika/process/interaction_counter/InteractionCounter.h>
#include <corsika/process/observation_plane/ObservationPlane.h>
#include <corsika/process/particle_cut/ParticleCut.h>
#include <corsika/process/pythia/Decay.h>
#include <corsika/process/sibyll/Decay.h>
#include <corsika/process/sibyll/Interaction.h>
#include <corsika/process/sibyll/NuclearInteraction.h>
#include <corsika/process/switch_process/SwitchProcess.h>
#include <corsika/process/tracking_line/TrackingLine.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/units/PhysicalUnits.h>
#include <typeinfo>
using namespace corsika;
using namespace corsika::process;
using namespace corsika::units;
using namespace corsika::particles;
using namespace corsika::random;
using namespace corsika::setup;
using namespace corsika::geometry;
using namespace corsika::environment;
using namespace std;
using namespace corsika::units::si;
void registerRandomStreams() {
random::RNGManager::GetInstance().RegisterRandomStream("cascade");
random::RNGManager::GetInstance().RegisterRandomStream("qgran");
random::RNGManager::GetInstance().RegisterRandomStream("s_rndm");
random::RNGManager::GetInstance().RegisterRandomStream("pythia");
random::RNGManager::GetInstance().RegisterRandomStream("UrQMD");
random::RNGManager::GetInstance().SeedAll();
}
int main(int argc, char** argv) {
if (argc != 4) {
std::cerr << "usage: vertical_EAS <A> <Z> <energy/GeV>" << std::endl;
feenableexcept(FE_INVALID);
// initialize random number sequence(s)
using EnvType = Environment<setup::IEnvironmentModel>;
EnvType env;
environment::LayeredSphericalAtmosphereBuilder builder(Point{rootCS, 0_m, 0_m, 0_m});
builder.setNuclearComposition(
{{particles::Code::Nitrogen, particles::Code::Oxygen},
{0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now
builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km);
builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km);
builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km);
builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km);
builder.addLinearLayer(1e9_cm, 112.8_km);
builder.assemble(env);
// setup particle stack, and add primary particle
setup::Stack stack;
stack.Clear();
const Code beamCode = Code::Nucleus;
unsigned short const A = std::stoi(std::string(argv[1]));
unsigned short Z = std::stoi(std::string(argv[2]));
auto const mass = particles::GetNucleusMass(A, Z);
const HEPEnergyType E0 = 1_GeV * std::stof(std::string(argv[3]));
builder.earthRadius); // this is the CORSIKA 7 start of atmosphere/universe
// {
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const [px, py, pz] =
momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0);
auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << " phi=" << phi << endl;
cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl;
if (A != 1) {
stack.AddParticle(std::tuple<particles::Code, units::si::HEPEnergyType,
corsika::stack::MomentumVector, geometry::Point,
units::si::TimeType, unsigned short, unsigned short>{
beamCode, E0, plab, injectionPos, 0_ns, A, Z});
} else {
stack.AddParticle(
std::tuple<particles::Code, units::si::HEPEnergyType,
corsika::stack::MomentumVector, geometry::Point, units::si::TimeType>{
particles::Code::Proton, E0, plab, injectionPos, 0_ns});
}
Line const line(injectionPos, plab.normalized() * 1_m * 1_Hz);
auto const velocity = line.GetV0().norm();
auto const observationHeight = 1.4_km + builder.earthRadius;
setup::Trajectory const showerAxis(line, (112.7_km - observationHeight) / velocity);
// setup processes, decays and interactions
process::sibyll::Interaction sibyll;
process::interaction_counter::InteractionCounter sibyllCounted(sibyll);
process::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
process::interaction_counter::InteractionCounter sibyllNucCounted(sibyllNuc);
process::pythia::Decay decayPythia;
// use sibyll decay routine for decays of particles unknown to pythia
process::sibyll::Decay decaySibyll({
Code::N1440Plus,
Code::N1440MinusBar,
Code::N1440_0,
Code::N1440_0Bar,
Code::N1710Plus,
Code::N1710MinusBar,
Code::N1710_0,
Code::N1710_0Bar,
Code::Pi1300Plus,
Code::Pi1300Minus,
Code::Pi1300_0,
Code::KStar0_1430_0,
Code::KStar0_1430_0Bar,
Code::KStar0_1430_Plus,
Code::KStar0_1430_MinusBar,
});
decaySibyll.PrintDecayConfig();
process::particle_cut::ParticleCut cut(100_GeV);
process::energy_loss::EnergyLoss eLoss(showerAxis);
Plane const obsPlane(Point(rootCS, 0_m, 0_m, observationHeight),
Vector<dimensionless_d>(rootCS, {0., 0., 1.}));
process::observation_plane::ObservationPlane observationLevel(obsPlane, "/dev/null");
// assemble all processes into an ordered process list
auto sibyllSequence = sibyllNucCounted << sibyllCounted;
process::switch_process::SwitchProcess switchProcess(urqmd, sibyllSequence, 55_GeV);
auto decaySequence = decayPythia << decaySibyll;
auto sequence = switchProcess << decaySequence << eLoss << cut << observationLevel;
cascade::Cascade EAS(env, tracking, sequence, stack);
EAS.Init();
// EAS.SetNodes();
// EAS.forceInteraction();
EAS.Run();
eLoss.PrintProfile(); // print longitudinal profile
cut.ShowResults();
const HEPEnergyType Efinal =
cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
cout << "total dEdX energy (GeV): " << eLoss.GetTotal() / 1_GeV << endl
<< "relative difference (%): " << eLoss.GetTotal() / E0 * 100 << endl;
auto const hists = sibyllCounted.GetHistogram() + sibyllNucCounted.GetHistogram();
hists.saveLab("inthist_lab.txt");
hists.saveCMS("inthist_cms.txt");
std::ofstream finish("finished");
finish << "run completed without error" << std::endl;