/* * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu * * See file AUTHORS for a list of contributors. * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/cascade/Cascade.h> #include <corsika/environment/Environment.h> #include <corsika/environment/FlatExponential.h> #include <corsika/environment/LayeredSphericalAtmosphereBuilder.h> #include <corsika/environment/NuclearComposition.h> #include <corsika/geometry/Plane.h> #include <corsika/geometry/Sphere.h> #include <corsika/process/ProcessSequence.h> #include <corsika/process/StackProcess.h> #include <corsika/process/energy_loss/EnergyLoss.h> #include <corsika/process/interaction_counter/InteractionCounter.h> #include <corsika/process/observation_plane/ObservationPlane.h> #include <corsika/process/particle_cut/ParticleCut.h> #include <corsika/process/pythia/Decay.h> #include <corsika/process/sibyll/Decay.h> #include <corsika/process/sibyll/Interaction.h> #include <corsika/process/sibyll/NuclearInteraction.h> #include <corsika/process/switch_process/SwitchProcess.h> #include <corsika/process/tracking_line/TrackingLine.h> #include <corsika/process/urqmd/UrQMD.h> #include <corsika/random/RNGManager.h> #include <corsika/setup/SetupStack.h> #include <corsika/setup/SetupTrajectory.h> #include <corsika/units/PhysicalUnits.h> #include <corsika/utl/CorsikaFenv.h> #include <iomanip> #include <iostream> #include <limits> #include <string> #include <typeinfo> using namespace corsika; using namespace corsika::process; using namespace corsika::units; using namespace corsika::particles; using namespace corsika::random; using namespace corsika::setup; using namespace corsika::geometry; using namespace corsika::environment; using namespace std; using namespace corsika::units::si; void registerRandomStreams() { random::RNGManager::GetInstance().RegisterRandomStream("cascade"); random::RNGManager::GetInstance().RegisterRandomStream("qgran"); random::RNGManager::GetInstance().RegisterRandomStream("s_rndm"); random::RNGManager::GetInstance().RegisterRandomStream("pythia"); random::RNGManager::GetInstance().RegisterRandomStream("UrQMD"); random::RNGManager::GetInstance().SeedAll(); } int main(int argc, char** argv) { if (argc != 4) { std::cerr << "usage: vertical_EAS <A> <Z> <energy/GeV>" << std::endl; return 1; } feenableexcept(FE_INVALID); // initialize random number sequence(s) registerRandomStreams(); // setup environment, geometry using EnvType = Environment<setup::IEnvironmentModel>; EnvType env; const CoordinateSystem& rootCS = env.GetCoordinateSystem(); environment::LayeredSphericalAtmosphereBuilder builder(Point{rootCS, 0_m, 0_m, 0_m}); builder.setNuclearComposition( {{particles::Code::Nitrogen, particles::Code::Oxygen}, {0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km); builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km); builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km); builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km); builder.addLinearLayer(1e9_cm, 112.8_km); builder.assemble(env); // setup particle stack, and add primary particle setup::Stack stack; stack.Clear(); const Code beamCode = Code::Nucleus; unsigned short const A = std::stoi(std::string(argv[1])); unsigned short Z = std::stoi(std::string(argv[2])); auto const mass = particles::GetNucleusMass(A, Z); const HEPEnergyType E0 = 1_GeV * std::stof(std::string(argv[3])); double theta = 0.; double phi = 0.; Point const injectionPos( rootCS, 0_m, 0_m, 112.7_km + builder.earthRadius); // this is the CORSIKA 7 start of atmosphere/universe // { auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) { return sqrt((Elab - m) * (Elab + m)); }; HEPMomentumType P0 = elab2plab(E0, mass); auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) { return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi), -ptot * cos(theta)); }; auto const [px, py, pz] = momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0); auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz}); cout << "input particle: " << beamCode << endl; cout << "input angles: theta=" << theta << " phi=" << phi << endl; cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl; if (A != 1) { stack.AddParticle(std::tuple<particles::Code, units::si::HEPEnergyType, corsika::stack::MomentumVector, geometry::Point, units::si::TimeType, unsigned short, unsigned short>{ beamCode, E0, plab, injectionPos, 0_ns, A, Z}); } else { stack.AddParticle( std::tuple<particles::Code, units::si::HEPEnergyType, corsika::stack::MomentumVector, geometry::Point, units::si::TimeType>{ particles::Code::Proton, E0, plab, injectionPos, 0_ns}); } Line const line(injectionPos, plab.normalized() * 1_m * 1_Hz); auto const velocity = line.GetV0().norm(); auto const observationHeight = 1.4_km + builder.earthRadius; setup::Trajectory const showerAxis(line, (112.7_km - observationHeight) / velocity); // setup processes, decays and interactions process::sibyll::Interaction sibyll; process::interaction_counter::InteractionCounter sibyllCounted(sibyll); process::sibyll::NuclearInteraction sibyllNuc(sibyll, env); process::interaction_counter::InteractionCounter sibyllNucCounted(sibyllNuc); process::pythia::Decay decayPythia; // use sibyll decay routine for decays of particles unknown to pythia process::sibyll::Decay decaySibyll({ Code::N1440Plus, Code::N1440MinusBar, Code::N1440_0, Code::N1440_0Bar, Code::N1710Plus, Code::N1710MinusBar, Code::N1710_0, Code::N1710_0Bar, Code::Pi1300Plus, Code::Pi1300Minus, Code::Pi1300_0, Code::KStar0_1430_0, Code::KStar0_1430_0Bar, Code::KStar0_1430_Plus, Code::KStar0_1430_MinusBar, }); decaySibyll.PrintDecayConfig(); process::particle_cut::ParticleCut cut(100_GeV); process::energy_loss::EnergyLoss eLoss(showerAxis); Plane const obsPlane(Point(rootCS, 0_m, 0_m, observationHeight), Vector<dimensionless_d>(rootCS, {0., 0., 1.})); process::observation_plane::ObservationPlane observationLevel(obsPlane, "/dev/null"); // assemble all processes into an ordered process list process::UrQMD::UrQMD urqmd; auto sibyllSequence = sibyllNucCounted << sibyllCounted; process::switch_process::SwitchProcess switchProcess(urqmd, sibyllSequence, 55_GeV); auto decaySequence = decayPythia << decaySibyll; auto sequence = switchProcess << decaySequence << eLoss << cut << observationLevel; // define air shower object, run simulation tracking_line::TrackingLine tracking; cascade::Cascade EAS(env, tracking, sequence, stack); EAS.Init(); // EAS.SetNodes(); // EAS.forceInteraction(); EAS.Run(); eLoss.PrintProfile(); // print longitudinal profile cut.ShowResults(); const HEPEnergyType Efinal = cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy(); cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl << "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl; cout << "total dEdX energy (GeV): " << eLoss.GetTotal() / 1_GeV << endl << "relative difference (%): " << eLoss.GetTotal() / E0 * 100 << endl; auto const hists = sibyllCounted.GetHistogram() + sibyllNucCounted.GetHistogram(); hists.saveLab("inthist_lab.txt"); hists.saveCMS("inthist_cms.txt"); std::ofstream finish("finished"); finish << "run completed without error" << std::endl; }