Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/cascade/Cascade.h>
#include <corsika/process/ProcessSequence.h>
#include <corsika/process/energy_loss/EnergyLoss.h>
#include <corsika/process/hadronic_elastic_model/HadronicElasticModel.h>
#include <corsika/process/stack_inspector/StackInspector.h>
#include <corsika/process/tracking_line/TrackingLine.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/environment/Environment.h>
#include <corsika/environment/HomogeneousMedium.h>
#include <corsika/environment/NuclearComposition.h>
#include <corsika/geometry/Sphere.h>
#include <corsika/process/sibyll/Decay.h>
#include <corsika/process/sibyll/Interaction.h>
#include <corsika/process/sibyll/NuclearInteraction.h>
#include <corsika/process/pythia/Decay.h>
#include <corsika/process/track_writer/TrackWriter.h>
#include <corsika/units/PhysicalUnits.h>
#include <corsika/random/RNGManager.h>
#include <corsika/utl/CorsikaFenv.h>
#include <boost/type_index.hpp>
using boost::typeindex::type_id_with_cvr;
#include <iostream>
#include <limits>
#include <typeinfo>
using namespace corsika;
using namespace corsika::process;
using namespace corsika::units;
using namespace corsika::particles;
using namespace corsika::random;
using namespace corsika::setup;
using namespace corsika::geometry;
using namespace corsika::environment;
using namespace std;
using namespace corsika::units::si;
class ProcessCut : public process::SecondariesProcess<ProcessCut> {
HEPEnergyType fECut;
HEPEnergyType fEnergy = 0_GeV;
HEPEnergyType fEmEnergy = 0_GeV;
int fEmCount = 0;
HEPEnergyType fInvEnergy = 0_GeV;
int fInvCount = 0;
public:
ProcessCut(const HEPEnergyType cut)
: fECut(cut) {}
template <typename Particle>
bool isBelowEnergyCut(Particle& p) const {
// nuclei
if (p.GetPID() == particles::Code::Nucleus) {
auto const ElabNuc = p.GetEnergy() / p.GetNuclearA();
auto const EcmNN = sqrt(2. * ElabNuc * 0.93827_GeV);
if (ElabNuc < fECut || EcmNN < 10_GeV)
return true;
else
return false;
} else {
// TODO: center-of-mass energy hard coded
const HEPEnergyType Ecm = sqrt(2. * p.GetEnergy() * 0.93827_GeV);
if (p.GetEnergy() < fECut || Ecm < 10_GeV)
return true;
else
return false;
}
}
bool isEmParticle(Code pCode) const {
bool is_em = false;
// FOR NOW: switch
switch (pCode) {
case Code::Electron:
is_em = true;
break;
case Code::Positron:
is_em = true;
break;
case Code::Gamma:
is_em = true;
break;
default:
break;
}
return is_em;
}
void defineEmParticles() const {
// create bool array identifying em particles
}
bool isInvisible(Code pCode) const {
bool is_inv = false;
// FOR NOW: switch
switch (pCode) {
case Code::NuE:
is_inv = true;
break;
case Code::NuEBar:
is_inv = true;
break;
case Code::NuMu:
is_inv = true;
break;
case Code::NuMuBar:
is_inv = true;
break;
case Code::MuPlus:
is_inv = true;
break;
case Code::MuMinus:
is_inv = true;
break;
case Code::Neutron:
is_inv = true;
break;
case Code::AntiNeutron:
is_inv = true;
break;
default:
break;
}
return is_inv;
}
template <typename TSecondaries>
EProcessReturn DoSecondaries(TSecondaries& vS) {
auto p = vS.begin();
while (p != vS.end()) {
const Code pid = p.GetPID();
HEPEnergyType energy = p.GetEnergy();
cout << "ProcessCut: DoSecondaries: " << pid << " E= " << energy
<< ", EcutTot=" << (fEmEnergy + fInvEnergy + fEnergy) / 1_GeV << " GeV"
<< endl;
cout << "removing em. particle..." << endl;
fEmEnergy += energy;
fEmCount += 1;
p.Delete();
cout << "removing inv. particle..." << endl;
fInvEnergy += energy;
fInvCount += 1;
p.Delete();
cout << "removing low en. particle..." << endl;
fEnergy += energy;
p.Delete();
} else if (p.GetTime() > 10_ms) {
cout << "removing OLD particle..." << endl;
fEnergy += energy;
p.Delete();
++p; // next entry in SecondaryView
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
}
}
return EProcessReturn::eOk;
}
void Init() {
fEmEnergy = 0. * 1_GeV;
fEmCount = 0;
fInvEnergy = 0. * 1_GeV;
fInvCount = 0;
fEnergy = 0. * 1_GeV;
// defineEmParticles();
}
void ShowResults() {
cout << " ******************************" << endl
<< " ParticleCut: " << endl
<< " energy in em. component (GeV): " << fEmEnergy / 1_GeV << endl
<< " no. of em. particles injected: " << fEmCount << endl
<< " energy in inv. component (GeV): " << fInvEnergy / 1_GeV << endl
<< " no. of inv. particles injected: " << fInvCount << endl
<< " energy below particle cut (GeV): " << fEnergy / 1_GeV << endl
<< " ******************************" << endl;
}
HEPEnergyType GetInvEnergy() const { return fInvEnergy; }
HEPEnergyType GetCutEnergy() const { return fEnergy; }
HEPEnergyType GetEmEnergy() const { return fEmEnergy; }
};
class ObservationLevel : public process::ContinuousProcess<ObservationLevel> {
LengthType fHeight;
public:
ObservationLevel(const LengthType vHeight)
: fHeight(vHeight) {}
template <typename Particle>
LengthType MaxStepLength(Particle&, setup::Trajectory&) const {
return 1_m * std::numeric_limits<double>::infinity();
}
template <typename TParticle, typename TTrack>
EProcessReturn DoContinuous(TParticle&, TTrack& vT) {
if ((vT.GetPosition(0).GetZ() <= fHeight && vT.GetPosition(1).GetZ() > fHeight) ||
(vT.GetPosition(0).GetZ() > fHeight && vT.GetPosition(1).GetZ() <= fHeight)) {
cout << "OBSERVED " << endl;
return EProcessReturn::eParticleAbsorbed;
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
}
return EProcessReturn::eOk;
}
void Init() {}
};
//
// The example main program for a particle cascade
//
int main() {
feenableexcept(FE_INVALID);
// initialize random number sequence(s)
random::RNGManager::GetInstance().RegisterRandomStream("cascade");
// setup environment, geometry
environment::Environment env;
auto& universe = *(env.GetUniverse());
auto theMedium = environment::Environment::CreateNode<Sphere>(
Point{env.GetCoordinateSystem(), 0_m, 0_m, 0_m},
1_km * std::numeric_limits<double>::infinity());
// fraction of oxygen
const float fox = 0.20946;
using MyHomogeneousModel = environment::HomogeneousMedium<environment::IMediumModel>;
theMedium->SetModelProperties<MyHomogeneousModel>(
1_kg / (1_m * 1_m * 1_m),
environment::NuclearComposition(
std::vector<particles::Code>{particles::Code::Nitrogen,
particles::Code::Oxygen},
std::vector<float>{(float)1. - fox, fox}));
universe.AddChild(std::move(theMedium));
const CoordinateSystem& rootCS = env.GetCoordinateSystem();
// setup processes, decays and interactions
tracking_line::TrackingLine<setup::Stack, setup::Trajectory> tracking(env);
// stack_inspector::StackInspector<setup::Stack> stackInspect(true);
const std::vector<particles::Code> trackedHadrons = {
particles::Code::PiPlus, particles::Code::PiMinus, particles::Code::KPlus,
particles::Code::KMinus, particles::Code::K0Long, particles::Code::K0Short};
random::RNGManager::GetInstance().RegisterRandomStream("s_rndm");
process::sibyll::Interaction sibyll(env);
process::sibyll::NuclearInteraction sibyllNuc(env, sibyll);
process::sibyll::Decay decay(trackedHadrons);
// random::RNGManager::GetInstance().RegisterRandomStream("pythia");
// process::pythia::Decay decay(trackedHadrons);
ProcessCut cut(20_GeV);
ObservationLevel obsLevel(1400_m);
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// random::RNGManager::GetInstance().RegisterRandomStream("HadronicElasticModel");
// process::HadronicElasticModel::HadronicElasticInteraction
// hadronicElastic(env);
process::TrackWriter::TrackWriter trackWriter("tracks.dat");
process::EnergyLoss::EnergyLoss eLoss;
// assemble all processes into an ordered process list
// auto sequence = stackInspect << sibyll << decay << hadronicElastic << cut <<
// trackWriter; auto sequence = stackInspect << sibyll << sibyllNuc << decay << eLoss <<
// cut << trackWriter;
auto sequence = sibyll << sibyllNuc << decay << eLoss << cut << obsLevel;
// auto sequence = stackInspect << sibyll << sibyllNuc << decay << eLoss << cut;
// cout << "decltype(sequence)=" << type_id_with_cvr<decltype(sequence)>().pretty_name()
// << "\n";
// setup particle stack, and add primary particle
setup::Stack stack;
stack.Clear();
const Code beamCode = Code::Nucleus;
const int nuclA = 4;
const int nuclZ = int(nuclA / 2.15 + 0.7);
const HEPMassType mass = GetNucleusMass(nuclA, nuclZ);
const HEPEnergyType E0 = nuclA * 10_TeV;
double theta = 0.;
double phi = 0.;
{
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const [px, py, pz] =
momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0);
auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << " phi=" << phi << endl;
cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl;
Point pos(rootCS, 0_m, 0_m,
112.8_km); // this is the CORSIKA 7 start of atmosphere/universe
stack.AddParticle(std::tuple<particles::Code, units::si::HEPEnergyType,
corsika::stack::MomentumVector, geometry::Point,
units::si::TimeType, unsigned short, unsigned short>{
beamCode, E0, plab, pos, 0_ns, nuclA, nuclZ});
}
// define air shower object, run simulation
cascade::Cascade EAS(env, tracking, sequence, stack);
EAS.Init();
EAS.Run();
eLoss.PrintProfile(); // print longitudinal profile
cut.ShowResults();
const HEPEnergyType Efinal =
cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
cout << "total dEdX energy (GeV): " << eLoss.GetTotal() / 1_GeV << endl
<< "relative difference (%): " << eLoss.GetTotal() / E0 * 100 << endl;
}