Newer
Older
/*
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/cascade/Cascade.h>
#include <corsika/process/ProcessSequence.h>
#include <corsika/process/observation_plane/ObservationPlane.h>
#include <corsika/process/particle_cut/ParticleCut.h>
#include <corsika/process/switch_process/SwitchProcess.h>
#include <corsika/process/tracking_line/TrackingLine.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
Maximilian Reininghaus
committed
#include <corsika/environment/LayeredSphericalAtmosphereBuilder.h>
#include <corsika/environment/NuclearComposition.h>
#include <corsika/process/sibyll/Decay.h>
#include <corsika/process/sibyll/Interaction.h>
#include <corsika/process/sibyll/NuclearInteraction.h>
#include <corsika/process/particle_cut/ParticleCut.h>
#include <corsika/units/PhysicalUnits.h>
#include <corsika/random/RNGManager.h>
#include <corsika/utl/CorsikaFenv.h>
#include <iostream>
#include <limits>
#include <typeinfo>
using namespace corsika;
using namespace corsika::process;
using namespace corsika::units;
using namespace corsika::particles;
using namespace corsika::random;
using namespace corsika::setup;
using namespace corsika::geometry;
using namespace corsika::environment;
using namespace std;
using namespace corsika::units::si;
void registerRandomStreams() {
random::RNGManager::GetInstance().RegisterRandomStream("cascade");
random::RNGManager::GetInstance().RegisterRandomStream("s_rndm");
//random::RNGManager::GetInstance().RegisterRandomStream("pythia");
random::RNGManager::GetInstance().RegisterRandomStream("UrQMD");
random::RNGManager::GetInstance().SeedAll();
}
int main() {
feenableexcept(FE_INVALID);
// initialize random number sequence(s)
using EnvType = Environment<setup::IEnvironmentModel>;
EnvType env;
environment::LayeredSphericalAtmosphereBuilder builder(Point{rootCS, 0_m, 0_m, 0_m});
builder.setNuclearComposition(
{{particles::Code::Nitrogen, particles::Code::Oxygen},
{0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now
builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km);
builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km);
builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km);
builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km);
builder.addLinearLayer(1e9_cm, 112.8_km);
builder.assemble(env);
// setup particle stack, and add primary particle
setup::Stack stack;
stack.Clear();
const Code beamCode = Code::Proton;
auto const mass = particles::GetMass(beamCode);
const HEPEnergyType E0 = 0.1_PeV;
rootCS, 0_m, 0_m,
112.8_km * 0.999 +
builder.earthRadius); // this is the CORSIKA 7 start of atmosphere/universe
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// {
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const [px, py, pz] =
momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0);
auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << " phi=" << phi << endl;
cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl;
stack.AddParticle(
std::tuple<particles::Code, units::si::HEPEnergyType,
corsika::stack::MomentumVector, geometry::Point, units::si::TimeType>{
beamCode, E0, plab, injectionPos, 0_ns});
// }
Line const line(injectionPos, plab.normalized() * 1_m * 1_Hz);
auto const velocity = line.GetV0().norm();
auto const observationHeight = 1.425_km + builder.earthRadius;
setup::Trajectory const showerAxis(line, (112.8_km - observationHeight) / velocity);
// setup processes, decays and interactions
process::sibyll::Interaction sibyll;
process::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
process::track_writer::TrackWriter trackWriter("tracks.dat");
process::energy_loss::EnergyLoss eLoss(showerAxis);
Plane const obsPlane(Point(rootCS, 0_m, 0_m, observationHeight),
Vector<dimensionless_d>(rootCS, {0., 0., 1.}));
process::observation_plane::ObservationPlane observationLevel(obsPlane,
"particles.dat");
// assemble all processes into an ordered process list
process::UrQMD::UrQMD urqmd;
auto sibyllSequence = sibyll << sibyllNuc;
process::switch_process::SwitchProcess switchProcess(urqmd, sibyllSequence, 55_GeV);
auto sequence = switchProcess << decay << eLoss << cut << observationLevel
<< trackWriter;
cascade::Cascade EAS(env, tracking, sequence, stack);
EAS.Init();
EAS.Run();
eLoss.PrintProfile(); // print longitudinal profile
cut.ShowResults();
const HEPEnergyType Efinal =
cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
cout << "total dEdX energy (GeV): " << eLoss.GetTotal() / 1_GeV << endl
<< "relative difference (%): " << eLoss.GetTotal() / E0 * 100 << endl;
std::ofstream finish("finished");
finish << "run completed without error" << std::endl;