Newer
Older
/*
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <catch2/catch.hpp>
#include <corsika/modules/radio/ZHS.hpp>
#include <corsika/modules/radio/CoREAS.hpp>
#include <corsika/modules/radio/antennas/TimeDomainAntenna.hpp>
#include <corsika/modules/radio/detectors/RadioDetector.hpp>
#include <corsika/modules/radio/propagators/StraightPropagator.hpp>

Nikos Karastathis
committed
#include <corsika/modules/radio/propagators/SimplePropagator.hpp>
#include <corsika/modules/radio/propagators/SignalPath.hpp>
#include <corsika/modules/radio/propagators/RadioPropagator.hpp>
#include <vector>
#include <istream>
#include <fstream>
#include <iostream>
#include <corsika/media/Environment.hpp>
#include <corsika/media/FlatExponential.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMagneticFieldModel.hpp>
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/media/SlidingPlanarExponential.hpp>
#include <corsika/media/IMediumModel.hpp>
#include <corsika/media/IRefractiveIndexModel.hpp>
#include <corsika/media/UniformRefractiveIndex.hpp>
#include <corsika/media/ExponentialRefractiveIndex.hpp>
#include <corsika/media/VolumeTreeNode.hpp>
#include <corsika/media/CORSIKA7Atmospheres.hpp>
#include <corsika/framework/geometry/CoordinateSystem.hpp>
#include <corsika/framework/geometry/Line.hpp>
#include <corsika/framework/geometry/Point.hpp>
#include <corsika/framework/geometry/RootCoordinateSystem.hpp>
#include <corsika/framework/geometry/Vector.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupEnvironment.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/core/PhysicalConstants.hpp>
#include <corsika/output/OutputManager.hpp>
using namespace corsika;
double constexpr absMargin = 1.0e-7;
template <typename TInterface>
using MyExtraEnv =
UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<TInterface>>>;
logging::set_level(logging::level::debug);
// This serves as a compiler test for any changes in the CoREAS algorithm
// Environment
IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>;
// using EnvType = setup::Environment;
using EnvType = Environment<EnvironmentInterface>;
EnvType envCoREAS;
CoordinateSystemPtr const& rootCSCoREAS = envCoREAS.getCoordinateSystem();
Point const center{rootCSCoREAS, 0_m, 0_m, 0_m};
// 1.000327,
create_5layer_atmosphere<EnvironmentInterface, MyExtraEnv>(envCoREAS, AtmosphereId::LinsleyUSStd, center,
1.000327, Medium::AirDry1Atm,
MagneticFieldVector{rootCSCoREAS, 0_T,
50_uT, 0_T});
// the antennas location
const auto point1{Point(envCoREAS.getCoordinateSystem(), 100_m, 2_m, 3_m)};
const auto point2{Point(envCoREAS.getCoordinateSystem(), 4_m, 80_m, 6_m)};
const auto point3{Point(envCoREAS.getCoordinateSystem(), 7_m, 8_m, 9_m)};
const auto point4{Point(envCoREAS.getCoordinateSystem(), 5_m, 5_m, 10_m)};
// create times for the antenna
const TimeType t2{10_s};
const InverseTimeType t3{1e+3_Hz};
const TimeType t4{11_s};
// check that I can create an antenna at (1, 2, 3)
TimeDomainAntenna ant1("antenna_name", point1, t1, t2, t3, t1);
TimeDomainAntenna ant2("antenna_name2", point2, t1, t2, t3, t1);
// construct a radio detector instance to store our antennas
AntennaCollection<TimeDomainAntenna> detector;
// add the antennas to the detector
detector.addAntenna(ant1);
detector.addAntenna(ant2);
const Code particle{Code::Electron};
// const Code particle{Code::Proton};
const auto pmass{get_mass(particle)};
VelocityVector v0(rootCSCoREAS, {5e+2_m / second, 5e+2_m / second, 5e+2_m / second});
Vector B0(rootCSCoREAS, 5_T, 5_T, 5_T);
Line const line(point3, v0);
auto const k{1_m * ((1_m) / ((1_s * 1_s) * 1_V))};
auto const t = 1e-12_s;
LeapFrogTrajectory base(point4, v0, B0, k, t);
// std::cout << "Leap Frog Trajectory is: " << base << std::endl;
// create a new stack for each trial
setup::Stack stack;
// construct an energy
const HEPEnergyType E0{1_TeV};
// compute the necessary momentumn
const HEPMomentumType P0{sqrt(E0 * E0 - pmass * pmass)};
// and create the momentum vector
const auto plab{MomentumVector(rootCSCoREAS, {0_GeV, 0_GeV, P0})};
// and create the location of the particle in this coordinate system
const Point pos(rootCSCoREAS, 50_m, 10_m, 80_m);
// add the particle to the stack
auto const particle1{stack.addParticle(std::make_tuple(particle,
calculate_kinetic_energy(plab.getNorm(), get_mass(particle)),
plab.normalized(), pos, 0_ns))};
auto const charge_ {get_charge(particle1.getPID())};
// create a radio process instance using CoREAS
RadioProcess<decltype(detector), CoREAS<decltype(detector),
decltype(StraightPropagator(envCoREAS))>, decltype(StraightPropagator(envCoREAS))>
// check doContinuous and simulate methods
coreas.doContinuous(particle1, base, true);
} // END: SECTION("CoREAS process")
// This section serves as a compiler test for any changes in the ZHS algorithm
// Environment
using IModelInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>;
using AtmModel = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<HomogeneousMedium
<IModelInterface>>>>;
using EnvType = Environment<AtmModel>;
EnvType envZHS;
CoordinateSystemPtr const& rootCSZHS = envZHS.getCoordinateSystem();
// get the center point
Point const center{rootCSZHS, 0_m, 0_m, 0_m};
// a refractive index
const double ri_{1.000327};
// the constant density
const auto density{19.2_g / cube(1_cm)};
// the composition we use for the homogeneous medium
NuclearComposition const protonComposition({Code::Proton}, {1.});
// create magnetic field vector
Vector B1(rootCSZHS, 0_T, 0_T, 1_T);
auto Medium = EnvType::createNode<Sphere>(
center, 1_km * std::numeric_limits<double>::infinity());
auto const props = Medium->setModelProperties<AtmModel>(ri_, Medium::AirDry1Atm, B1, density, protonComposition);
envZHS.getUniverse()->addChild(std::move(Medium));
// the antennas location
const auto point1{Point(envZHS.getCoordinateSystem(), 100_m, 2_m, 3_m)};
const auto point2{Point(envZHS.getCoordinateSystem(), 4_m, 80_m, 6_m)};
const auto point3{Point(envZHS.getCoordinateSystem(), 7_m, 8_m, 9_m)};
const auto point4{Point(envZHS.getCoordinateSystem(), 5_m, 5_m, 10_m)};
// create times for the antenna
const TimeType t1{0_s};
const TimeType t2{10_s};
const InverseTimeType t3{1e+3_Hz};
const TimeType t4{11_s};
// check that I can create an antenna at (1, 2, 3)
TimeDomainAntenna ant1("antenna_zhs", point1, t1, t2, t3, t1);
TimeDomainAntenna ant2("antenna_zhs2", point2, t1, t2, t3, t1);
// construct a radio detector instance to store our antennas
AntennaCollection<TimeDomainAntenna> detector;
// add the antennas to the detector
detector.addAntenna(ant1);
detector.addAntenna(ant2);
// create a particle
auto const particle{Code::Electron};
const auto pmass{get_mass(particle)};
VelocityVector v0(rootCSZHS, {5e+2_m / second, 5e+2_m / second, 5e+2_m / second});
Vector B0(rootCSZHS, 5_T, 5_T, 5_T);
Line const line(point3, v0);
auto const k{1_m * ((1_m) / ((1_s * 1_s) * 1_V))};
auto const t = 1e-12_s;
LeapFrogTrajectory base(point4, v0, B0, k, t);
// std::cout << "Leap Frog Trajectory is: " << base << std::endl;
// create a new stack for each trial
setup::Stack stack;
// construct an energy
const HEPEnergyType E0{1_TeV};
const HEPMomentumType P0{sqrt(E0 * E0 - pmass * pmass)};
// and create the momentum vector
const auto plab{MomentumVector(rootCSZHS, {0_GeV, 0_GeV, P0})};
// and create the location of the particle in this coordinate system
const Point pos(rootCSZHS, 50_m, 10_m, 80_m);
// add the particle to the stack
auto const particle1{stack.addParticle(std::make_tuple(particle, calculate_kinetic_energy(plab.getNorm(), get_mass(particle)),
plab.normalized(), pos, 0_ns))};
auto const charge_ {get_charge(particle1.getPID())};
// create a radio process instance using ZHS
RadioProcess<AntennaCollection<TimeDomainAntenna>, ZHS<AntennaCollection<TimeDomainAntenna>,
decltype(StraightPropagator(envZHS))>, decltype(StraightPropagator(envZHS))>
// check doContinuous and simulate methods
zhs.doContinuous(particle1, base, true);
} // END: SECTION("ZHS process")
SECTION("TimeDomainAntenna") {
// create an environment so we can get a coordinate system
using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
EnvType env6;
using UniRIndex =
UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>;
// the antenna location
const auto point1{Point(env6.getCoordinateSystem(), 1_m, 2_m, 3_m)};
const auto point2{Point(env6.getCoordinateSystem(), 4_m, 5_m, 6_m)};
// get a coordinate system
const CoordinateSystemPtr rootCS6 = env6.getCoordinateSystem();
auto Medium6 = EnvType::createNode<Sphere>(
Point{rootCS6, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
auto const props6 = Medium6->setModelProperties<UniRIndex>(
1, 1_kg / (1_m * 1_m * 1_m),
NuclearComposition({Code::Nitrogen}, {1.}));
env6.getUniverse()->addChild(std::move(Medium6));
// create times for the antenna
const TimeType t1{10_s};
const TimeType t2{10_s};
const InverseTimeType t3{1/1_s};
const TimeType t4{11_s};
// check that I can create an antenna at (1, 2, 3)
TimeDomainAntenna ant1("antenna_name", point1, t1, t2, t3, t1);
TimeDomainAntenna ant2("antenna_name2", point2, t4, t2, t3, t4);
// assert that the antenna name is correct
REQUIRE(ant1.getName() == "antenna_name");
REQUIRE(ant2.getName() == "antenna_name2");
// and check that the antenna is at the right location
REQUIRE((ant1.getLocation() - point1).getNorm() < 1e-12 * 1_m);
REQUIRE((ant2.getLocation() - point2).getNorm() < 1e-12 * 1_m);
// construct a radio detector instance to store our antennas
AntennaCollection<TimeDomainAntenna> detector;
// add this antenna to the process
detector.addAntenna(ant1);
detector.addAntenna(ant2);
CHECK(detector.size() == 2);
// get a unit vector
Vector<dimensionless_d> v1(rootCS6, {0, 0, 1});
Vector<ElectricFieldType::dimension_type> v11(rootCS6, {10_V / 1_m, 10_V / 1_m, 10_V / 1_m});
Vector<dimensionless_d> v2(rootCS6, {0, 1, 0});
Vector<ElectricFieldType::dimension_type> v22(rootCS6, {20_V / 1_m, 20_V / 1_m, 20_V / 1_m});
// use receive methods
ant1.receive(15_s, v1, v11);
ant2.receive(16_s, v2, v22);
// use getWaveform() methods
auto [tx, Ex] = ant1.getWaveformX();
CHECK(Ex[5] - 10 == 0);
CHECK(tx[5] - 5 * 1_s / 1_ns == Approx(0.0));
auto [ty, Ey] = ant1.getWaveformY();
CHECK(Ey[5] - 10 == 0);
auto [tz, Ez] = ant1.getWaveformZ();
CHECK(Ez[5] - 10 == 0);
CHECK(tx[5] - ty[5] == 0);
CHECK(ty[5] - tz[5] == 0);
auto [tx2, Ex2] = ant2.getWaveformX();
CHECK(Ex2[5] - 20 == 0);
auto [ty2, Ey2] = ant2.getWaveformY();
CHECK(Ey2[5] - 20 == 0);
auto [tz2, Ez2] = ant2.getWaveformZ();
CHECK(Ez2[5] - 20 == 0);
// the following creates a star-shaped pattern of antennas in the ground
AntennaCollection<TimeDomainAntenna> detector__;
const auto point11{Point(env6.getCoordinateSystem(), 1000_m, 20_m, 30_m)};
const TimeType t2222{1e-6_s};
const InverseTimeType t3333{1e+9_Hz};
for (auto radius_ = 100_m; radius_ <= 200_m; radius_ += 100_m) {
for (auto phi_ = 0; phi_ <= 315; phi_ += 45) {
auto phiRad_ = phi_ / 180. * M_PI;
auto const point_ {Point(env6.getCoordinateSystem(), radius_ * cos(phiRad_), radius_ * sin(phiRad_), 0_m)};
auto time__ {(point11 - point_).getNorm() / constants::c};
const int rr_ = static_cast<int>(radius_ / 1_m);
std::string var_ = "antenna_R=" + std::to_string(rr_) + "_m-Phi=" + std::to_string(phi_) + "degrees";
TimeDomainAntenna ant111(var_, point_, time__, t2222, t3333, time__);
detector__.addAntenna(ant111);
}
}
// this prints out the antenna names and locations
for (auto const antenna : detector__.getAntennas()) {
std::cout << antenna.getName() << " --++-- " << antenna.getLocation() << std::endl;
}
} // END: SECTION("TimeDomainAntenna")

Nikos Karastathis
committed
SECTION("Simple Propagator w/ Uniform Refractive Index"){
// create a suitable environment
using IModelInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>;
using AtmModel = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<HomogeneousMedium
<IModelInterface>>>>;
using EnvType = Environment<AtmModel>;
EnvType env;
CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
// get the center point
Point const center{rootCS, 0_m, 0_m, 0_m};
// a refractive index for the vacuum
const double ri_{1};
// the constant density
const auto density{19.2_g / cube(1_cm)};
// the composition we use for the homogeneous medium
NuclearComposition const Composition({Code::Nitrogen}, {1.});

Nikos Karastathis
committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
// create magnetic field vector
Vector B1(rootCS, 0_T, 0_T, 0.3809_T);
// create a Sphere for the medium
auto Medium = EnvType::createNode<Sphere>(
center, 1_km * std::numeric_limits<double>::infinity());
// set the environment properties
auto const props = Medium->setModelProperties<AtmModel>(ri_, Medium::AirDry1Atm, B1, density, Composition);
// bind things together
env.getUniverse()->addChild(std::move(Medium));
// get some points
Point p0(rootCS, {0_m, 0_m, 0_m});
Point p10(rootCS, {0_m, 0_m, 10_m});
// get a unit vector
Vector<dimensionless_d> v1(rootCS, {0, 0, 1});
Vector<dimensionless_d> v2(rootCS, {0, 0, -1});
// get a geometrical path of points
Path P1({p0,p10});
// construct a Straight Propagator given the uniform refractive index environment
SimplePropagator SP(env);
// store the outcome of the Propagate method to paths_
auto const paths_ = SP.propagate(p0, p10, 1_m);
// perform checks to paths_ components
for (auto const& path : paths_) {
CHECK((path.propagation_time_ / 1_s) - (((p10 - p0).getNorm() / constants::c) / 1_s) == Approx(0));
CHECK(path.average_refractive_index_ == Approx(1));
CHECK(path.refractive_index_source_ == Approx(1));
CHECK(path.refractive_index_destination_ == Approx(1));
CHECK(path.emit_.getComponents() == v1.getComponents());
CHECK(path.receive_.getComponents() == v2.getComponents());
CHECK(path.R_distance_ == 10_m);
CHECK(std::equal(P1.begin(), P1.end(), Path(path.points_).begin(),[]
(Point a, Point b) { return (a - b).getNorm() / 1_m < 1e-5;}));
}
} // END: SECTION("Simple Propagator w/ Uniform Refractive Index")
// check that I can create working Straight Propagators in different environments
SECTION("Straight Propagator w/ Uniform Refractive Index") {
// create a suitable environment
using IModelInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>;
using AtmModel = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<HomogeneousMedium
<IModelInterface>>>>;
using EnvType = Environment<AtmModel>;
EnvType env;
CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
// get the center point
Point const center{rootCS, 0_m, 0_m, 0_m};
// a refractive index for the vacuum
const double ri_{1};
// the constant density
const auto density{19.2_g / cube(1_cm)};
// the composition we use for the homogeneous medium
NuclearComposition const Composition({Code::Nitrogen}, {1.});
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
// create magnetic field vector
Vector B1(rootCS, 0_T, 0_T, 0.3809_T);
// create a Sphere for the medium
auto Medium = EnvType::createNode<Sphere>(
center, 1_km * std::numeric_limits<double>::infinity());
// set the environment properties
auto const props = Medium->setModelProperties<AtmModel>(ri_, Medium::AirDry1Atm, B1, density, Composition);
// bind things together
env.getUniverse()->addChild(std::move(Medium));
// get some points
Point p0(rootCS, {0_m, 0_m, 0_m});
Point p1(rootCS, {0_m, 0_m, 1_m});
Point p2(rootCS, {0_m, 0_m, 2_m});
Point p3(rootCS, {0_m, 0_m, 3_m});
Point p4(rootCS, {0_m, 0_m, 4_m});
Point p5(rootCS, {0_m, 0_m, 5_m});
Point p6(rootCS, {0_m, 0_m, 6_m});
Point p7(rootCS, {0_m, 0_m, 7_m});
Point p8(rootCS, {0_m, 0_m, 8_m});
Point p9(rootCS, {0_m, 0_m, 9_m});
Point p10(rootCS, {0_m, 0_m, 10_m});
Point p30(rootCS, {0_m, 0_m, 30000_m});
// get a unit vector
Vector<dimensionless_d> v1(rootCS, {0, 0, 1});
Vector<dimensionless_d> v2(rootCS, {0, 0, -1});
// get a geometrical path of points
Path P1({p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10});
// construct a Straight Propagator given the uniform refractive index environment
StraightPropagator SP(env);
// store the outcome of the Propagate method to paths_
auto const paths_ = SP.propagate(p0, p10, 1_m);
// perform checks to paths_ components
for (auto const& path : paths_) {
CHECK((path.propagation_time_ / 1_s) - (((p10 - p0).getNorm() / constants::c) / 1_s) == Approx(0).margin(absMargin));
CHECK(path.average_refractive_index_ == Approx(1));
CHECK(path.refractive_index_source_ == Approx(1));
CHECK(path.refractive_index_destination_ == Approx(1));
CHECK(path.emit_.getComponents() == v1.getComponents());
CHECK(path.receive_.getComponents() == v2.getComponents());
CHECK(path.R_distance_ == 10_m);
CHECK(std::equal(P1.begin(), P1.end(), Path(path.points_).begin(),[]
(Point a, Point b) { return (a - b).getNorm() / 1_m < 1e-5;}));
}
// get another path to different points
auto const paths2_ {SP.propagate(p0, p30, 909_m)};
for (auto const& path : paths2_) {
CHECK((path.propagation_time_ / 1_s) - (((p30 - p0).getNorm() / constants::c) / 1_s) == Approx(0).margin(absMargin));
CHECK(path.average_refractive_index_ == Approx(1));
CHECK(path.refractive_index_source_ == Approx(1));
CHECK(path.refractive_index_destination_ == Approx(1));
CHECK(path.R_distance_ == 30000_m);
}
// get a third path using a weird stepsize
auto const paths3_ {SP.propagate(p0, p30, 731.89_m)};
for (auto const& path : paths3_) {
CHECK((path.propagation_time_ / 1_s) - (((p30 - p0).getNorm() / constants::c) / 1_s) == Approx(0).margin(absMargin));
CHECK(path.average_refractive_index_ == Approx(1));
CHECK(path.refractive_index_source_ == Approx(1));
CHECK(path.refractive_index_destination_ == Approx(1));
CHECK(path.R_distance_ == 30000_m);
}
CHECK(paths_.size() == 1);
CHECK(paths2_.size() == 1);
CHECK(paths3_.size() == 1);
} // END: SECTION("Straight Propagator w/ Uniform Refractive Index")
SECTION("Straight Propagator w/ Exponential Refractive Index") {
// create an environment with exponential refractive index (n_0 = 1 & lambda = 0)
using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium
<IRefractiveIndexModel<IMediumModel>>>;
using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
EnvType env1;
//get another coordinate system
const CoordinateSystemPtr rootCS1 = env1.getCoordinateSystem();
// the center of the earth
Point const center1_{rootCS1, 0_m, 0_m, 0_m};
LengthType const radius_{0_m};
auto Medium1 = EnvType::createNode<Sphere>(
Point{rootCS1, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
auto const props1 = Medium1->setModelProperties<ExpoRIndex>( 1, 0 / 1_m, center1_, radius_,
1_kg / (1_m * 1_m * 1_m),
NuclearComposition({Code::Nitrogen}, {1.}));
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
env1.getUniverse()->addChild(std::move(Medium1));
// get some points
Point pp0(rootCS1, {0_m, 0_m, 0_m});
Point pp1(rootCS1, {0_m, 0_m, 1_m});
Point pp2(rootCS1, {0_m, 0_m, 2_m});
Point pp3(rootCS1, {0_m, 0_m, 3_m});
Point pp4(rootCS1, {0_m, 0_m, 4_m});
Point pp5(rootCS1, {0_m, 0_m, 5_m});
Point pp6(rootCS1, {0_m, 0_m, 6_m});
Point pp7(rootCS1, {0_m, 0_m, 7_m});
Point pp8(rootCS1, {0_m, 0_m, 8_m});
Point pp9(rootCS1, {0_m, 0_m, 9_m});
Point pp10(rootCS1, {0_m, 0_m, 10_m});
// get a unit vector
Vector<dimensionless_d> vv1(rootCS1, {0, 0, 1});
Vector<dimensionless_d> vv2(rootCS1, {0, 0, -1});
// get a geometrical path of points
Path PP1({pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,pp10});
// construct a Straight Propagator given the exponential refractive index environment
StraightPropagator SP1(env1);
// store the outcome of Propagate method to paths1_
auto const paths1_ = SP1.propagate(pp0, pp10, 1_m);
// perform checks to paths1_ components (this is just a sketch for now)
for (auto const& path :paths1_) {
CHECK((path.propagation_time_ / 1_s) - (((pp10 - pp0).getNorm() / constants::c) / 1_s) == Approx(0).margin(absMargin));
CHECK( path.average_refractive_index_ == Approx(1) );
CHECK(path.refractive_index_source_ == Approx(1));
CHECK(path.refractive_index_destination_ == Approx(1));
CHECK( path.emit_.getComponents() == vv1.getComponents() );
CHECK( path.receive_.getComponents() == vv2.getComponents() );
CHECK( path.R_distance_ == 10_m );
CHECK(std::equal(PP1.begin(), PP1.end(), Path(path.points_).begin(),[]
(Point a, Point b) { return (a - b).getNorm() / 1_m < 1e-5;}));
}
CHECK( paths1_.size() == 1 );
/*
* A second environment with another exponential refractive index
*/
// create an environment with exponential refractive index (n_0 = 2 & lambda = 2)
using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium
<IRefractiveIndexModel<IMediumModel>>>;
using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
EnvType env2;
//get another coordinate system
const CoordinateSystemPtr rootCS2 = env2.getCoordinateSystem();
// the center of the earth
Point const center2_{rootCS2, 0_m, 0_m, 0_m};
auto Medium2 = EnvType::createNode<Sphere>(
Point{rootCS2, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
auto const props2 =
Medium2
->setModelProperties<ExpoRIndex>( 2, 2 / 1_m, center2_, radius_,
1_kg / (1_m * 1_m * 1_m),
NuclearComposition({Code::Nitrogen}, {1.}));
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
env2.getUniverse()->addChild(std::move(Medium2));
// get some points
Point ppp0(rootCS2, {0_m, 0_m, 0_m});
Point ppp10(rootCS2, {0_m, 0_m, 10_m});
// get a unit vector
Vector<dimensionless_d> vvv1(rootCS2, {0, 0, 1});
Vector<dimensionless_d> vvv2(rootCS2, {0, 0, -1});
// construct a Straight Propagator given the exponential refractive index environment
StraightPropagator SP2(env2);
// store the outcome of Propagate method to paths1_
auto const paths2_ = SP2.propagate(ppp0, ppp10, 1_m);
// perform checks to paths1_ components (this is just a sketch for now)
for (auto const& path :paths2_) {
CHECK( (path.propagation_time_ / 1_s) - ((3.177511688_m / (3 * constants::c)) / 1_s)
== Approx(0).margin(absMargin) );
CHECK( path.average_refractive_index_ == Approx(0.210275935) );
CHECK(path.refractive_index_source_ == Approx(2));
// CHECK(path.refractive_index_destination_ == Approx(0.0000000041));
CHECK( path.emit_.getComponents() == vvv1.getComponents() );
CHECK( path.receive_.getComponents() == vvv2.getComponents() );
CHECK( path.R_distance_ == 10_m );
}
CHECK( paths2_.size() == 1 );
} // END: SECTION("Straight Propagator w/ Exponential Refractive Index")
} // END: TEST_CASE("Radio", "[processes]")