Newer
Older
/*
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <catch2/catch.hpp>
#include <corsika/modules/radio/ZHS.hpp>
#include <corsika/modules/radio/CoREAS.hpp>
#include <corsika/modules/radio/antennas/TimeDomainAntenna.hpp>
#include <corsika/modules/radio/detectors/RadioDetector.hpp>
#include <corsika/modules/radio/propagators/StraightPropagator.hpp>
#include <corsika/modules/radio/propagators/SignalPath.hpp>
#include <corsika/modules/radio/propagators/RadioPropagator.hpp>
#include <vector>
#include <xtensor/xtensor.hpp>
#include <xtensor/xbuilder.hpp>
#include <xtensor/xio.hpp>
#include <xtensor/xcsv.hpp>
#include <istream>
#include <fstream>
#include <iostream>
#include <corsika/media/Environment.hpp>
#include <corsika/media/FlatExponential.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMagneticFieldModel.hpp>
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/media/SlidingPlanarExponential.hpp>
#include <corsika/media/Environment.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMediumModel.hpp>
#include <corsika/media/IRefractiveIndexModel.hpp>
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/UniformRefractiveIndex.hpp>
#include <corsika/media/ExponentialRefractiveIndex.hpp>
#include <corsika/media/VolumeTreeNode.hpp>
#include <corsika/framework/geometry/CoordinateSystem.hpp>
#include <corsika/framework/geometry/Line.hpp>
#include <corsika/framework/geometry/Point.hpp>
#include <corsika/framework/geometry/RootCoordinateSystem.hpp>
#include <corsika/framework/geometry/Vector.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupEnvironment.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/core/PhysicalConstants.hpp>
#include <corsika/media/UniformMagneticField.hpp>
using namespace corsika;
double constexpr absMargin = 1.0e-7;
// first step is to construct an environment for the propagation (uniform index 1)
using UniRIndex =
UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>;
using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
const CoordinateSystemPtr rootCSCoREAS = envCoREAS.getCoordinateSystem();
auto MediumCoREAS = EnvType::createNode<Sphere>(
Point{rootCSCoREAS, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
auto const propsZHS = MediumCoREAS->setModelProperties<UniRIndex>(
1, 1_kg / (1_m * 1_m * 1_m),
NuclearComposition(
std::vector<Code>{Code::Nitrogen},
std::vector<float>{1.f}));
envCoREAS.getUniverse()->addChild(std::move(MediumCoREAS));
// now create antennas and detectors
// the antennas location
const auto point1{Point(envCoREAS.getCoordinateSystem(), 100_m, 2_m, 3_m)};
const auto point2{Point(envCoREAS.getCoordinateSystem(), 4_m, 80_m, 6_m)};
const auto point3{Point(envCoREAS.getCoordinateSystem(), 7_m, 8_m, 9_m)};
const auto point4{Point(envCoREAS.getCoordinateSystem(), 5_m, 5_m, 10_m)};
// create times for the antenna
const TimeType t1{0_s};
const TimeType t2{100_s};
const InverseTimeType t3{1/1_s};
const TimeType t4{11_s};
// check that I can create an antenna at (1, 2, 3)
TimeDomainAntenna ant1("antenna_name", point1, t1, t2, t3);
TimeDomainAntenna ant2("antenna_name2", point2, t1, t2, t3);
// construct a radio detector instance to store our antennas
AntennaCollection<TimeDomainAntenna> detector;
// create a particle
auto const particle{Code::Electron};
const auto pmass{get_mass(particle)};
VelocityVector v0(rootCSCoREAS, {5e+2_m / second, 5e+2_m / second, 5e+2_m / second});
Vector B0(rootCSCoREAS, 5_T, 5_T, 5_T);
Line const line(point3, v0);
auto const k{1_m * ((1_m) / ((1_s * 1_s) * 1_V))};
auto const t = 10000_ms;
LeapFrogTrajectory base(point4, v0, B0, k, t);
// create a new stack for each trial
setup::Stack stack;
// construct an energy
const HEPEnergyType E0{1_TeV};
// compute the necessary momentumn
const HEPMomentumType P0{sqrt(E0 * E0 - pmass * pmass)};
// and create the momentum vector
const auto plab{MomentumVector(rootCSCoREAS, {0_GeV, 0_GeV, P0})};
// and create the location of the particle in this coordinate system
const Point pos(rootCSCoREAS, 50_m, 10_m, 80_m);
// add the particle to the stack
auto const particle1{stack.addParticle(std::make_tuple(particle, E0, plab, pos, 0_ns))};
auto const charge_ {get_charge(particle1.getPID())};
// std::cout << "charge: " << charge_ << std::endl;
// std::cout << "1 / c: " << 1. / constants::c << std::endl;
// set up a track object
// setup::Tracking tracking;
// auto startPoint_ {base.getPosition(0)};
// auto midPoint_ {base.getPosition(0.5)};
// auto endPoint_ {base.getPosition(1)};
// std::cout << "startPoint_: " << startPoint_ << std::endl;
// std::cout << "midPoint_: " << midPoint_ << std::endl;
// std::cout << "endPoint_: " << endPoint_ << std::endl;
// auto velo_ {base.getVelocity(0)};
// std::cout << "velocity: " << velo_ << std::endl;
// auto startTime_ {particle1.getTime() - base.getDuration()}; // time at the start point of the track hopefully.
// auto endTime_ {particle1.getTime()};
// std::cout << "startTime_: " << startTime_ << std::endl;
// std::cout << "endTime_: " << endTime_ << std::endl;
//
// auto beta_ {((endPoint_ - startPoint_) / (constants::c * (endTime_ - startTime_))).normalized()};
// std::cout << "beta_: " << beta_ << std::endl;
// Vector<dimensionless_d> v1(rootCSCoREAS, {0, 0, 1});
// std::cout << "v1: " << v1.getComponents() << std::endl;
//
// std::cout << "beta_.dot(v1): " << beta_.dot(v1) << std::endl;
//
// std::cout << "Pi: " << 1/M_PI << std::endl;
//
// std::cout << "speed of light: " << constants::c << std::endl;
//
// std::cout << "vacuum permitivity: " << constants::epsilonZero << std::endl;
// Create a CoREAS instance
// CoREAS<decltype(detector), decltype(StraightPropagator(envCoREAS))> coreas1(detector, envCoREAS);
// create a radio process instance using CoREAS
RadioProcess<decltype(detector), CoREAS<decltype(detector), decltype(StraightPropagator(envCoREAS))>, decltype(StraightPropagator(envCoREAS))>
coreas(detector, envCoREAS);
// check doContinuous and simulate methods
coreas.doContinuous(particle1, base);
// coreas1.simulate(particle1, base);
// check writeOutput method -> should produce 2 csv files for each antenna
coreas.writeOutput();
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// SECTION("TimeDomainAntenna") {
//
// // create an environment so we can get a coordinate system
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// EnvType env6;
//
// using UniRIndex =
// UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>;
//
//
// // the antenna location
// const auto point1{Point(env6.getCoordinateSystem(), 1_m, 2_m, 3_m)};
// const auto point2{Point(env6.getCoordinateSystem(), 4_m, 5_m, 6_m)};
//
//
// // get a coordinate system
// const CoordinateSystemPtr rootCS6 = env6.getCoordinateSystem();
//
// auto Medium6 = EnvType::createNode<Sphere>(
// Point{rootCS6, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
// auto const props6 = Medium6->setModelProperties<UniRIndex>(
// 1, 1_kg / (1_m * 1_m * 1_m),
// NuclearComposition(
// std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f}));
//
// env6.getUniverse()->addChild(std::move(Medium6));
//
// // create times for the antenna
// const TimeType t1{10_s};
// const TimeType t2{10_s};
// const InverseTimeType t3{1/1_s};
// const TimeType t4{11_s};
//
// // check that I can create an antenna at (1, 2, 3)
// TimeDomainAntenna ant1("antenna_name", point1, t1, t2, t3);
// TimeDomainAntenna ant2("antenna_name2", point2, t4, t2, t3);
//
// // assert that the antenna name is correct
// REQUIRE(ant1.getName() == "antenna_name");
// REQUIRE(ant2.getName() == "antenna_name2");
//
// // and check that the antenna is at the right location
// REQUIRE((ant1.getLocation() - point1).getNorm() < 1e-12 * 1_m);
// REQUIRE((ant2.getLocation() - point2).getNorm() < 1e-12 * 1_m);
//
// // construct a radio detector instance to store our antennas
// AntennaCollection<TimeDomainAntenna> detector;
//
// // add this antenna to the process
// detector.addAntenna(ant1);
// detector.addAntenna(ant2);
// CHECK(detector.size() == 2);
//
// // get a unit vector
// Vector<dimensionless_d> v1(rootCS6, {0, 0, 1});
// QuantityVector<ElectricFieldType::dimension_type> v11{10_V / 1_m, 10_V / 1_m, 10_V / 1_m};
//
// Vector<dimensionless_d> v2(rootCS6, {0, 1, 0});
// QuantityVector<ElectricFieldType::dimension_type> v22{20_V / 1_m, 20_V / 1_m, 20_V / 1_m};
//
// // use receive methods
// ant1.receive(15_s, v1, v11);
// ant2.receive(16_s, v2, v22);
//
// // use getWaveform() method
// auto [t111, E1] = ant1.getWaveform();
// CHECK(E1(5,0) - 10 == 0);
// auto [t222, E2] = ant2.getWaveform();
// CHECK(E2(5,0) -20 == 0);
//
// // use the receive method in a for loop. It works now!
// for (auto& xx : detector.getAntennas()) {
// }
//
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// // t & E are correct! uncomment to see them
//// for (auto& xx : detector.getAntennas()) {
//// auto [t,E] = xx.getWaveform();
//// std::cout << t << std::endl;
//// std::cout << " ... "<< std::endl;
//// std::cout << E << std::endl;
//// std::cout << " ... "<< std::endl;
//// }
//
// // check output files. It works, uncomment to see.
//// int i = 1;
//// for (auto& antenna : detector.getAntennas()) {
////
//// auto [t,E] = antenna.getWaveform();
//// auto c0 = xt::hstack(xt::xtuple(t,E));
//// std::ofstream out_file ("antenna" + to_string(i) + "_output.csv");
//// xt::dump_csv(out_file, c0);
//// out_file.close();
//// ++i;
////
//// }
//
// // check reset method for antennas. Uncomment to see they are zero
//// ant1.reset();
//// ant2.reset();
////
//// std::cout << ant1.waveformE_ << std::endl;
//// std::cout << ant2.waveformE_ << std::endl;
////
//// std::cout << " ... "<< std::endl;
//// std::cout << " ... "<< std::endl;
//
// // check reset method for antenna collection. Uncomment to see they are zero
//// detector.reset();
//// for (auto& xx : detector.getAntennas()) {
//// std::cout << xx.waveformE_ << std::endl;
//// std::cout << " ... "<< std::endl;
//// }
//
//
// }
//
// // check that I can create working Straight Propagators in different environments
// SECTION("Straight Propagator w/ Uniform Refractive Index") {
//
// // create an environment with uniform refractive index of 1
// using UniRIndex =
// UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>;
//
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// EnvType env;
//
// // get a coordinate system
// const CoordinateSystemPtr rootCS = env.getCoordinateSystem();
//
// auto Medium = EnvType::createNode<Sphere>(
// Point{rootCS, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
// auto const props = Medium->setModelProperties<UniRIndex>(
// 1, 1_kg / (1_m * 1_m * 1_m),
// NuclearComposition(
// std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f}));
//
// env.getUniverse()->addChild(std::move(Medium));
//
// // get some points
// Point p0(rootCS, {0_m, 0_m, 0_m});
// // Point p1(rootCS, {0_m, 0_m, 1_m});
// // Point p2(rootCS, {0_m, 0_m, 2_m});
// // Point p3(rootCS, {0_m, 0_m, 3_m});
// // Point p4(rootCS, {0_m, 0_m, 4_m});
// // Point p5(rootCS, {0_m, 0_m, 5_m});
// // Point p6(rootCS, {0_m, 0_m, 6_m});
// // Point p7(rootCS, {0_m, 0_m, 7_m});
// // Point p8(rootCS, {0_m, 0_m, 8_m});
// // Point p9(rootCS, {0_m, 0_m, 9_m});
// Point p10(rootCS, {0_m, 0_m, 10_m});
//
// // get a unit vector
// Vector<dimensionless_d> v1(rootCS, {0, 0, 1});
//
// // // get a geometrical path of points
// // Path P1({p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10});
//
// // construct a Straight Propagator given the uniform refractive index environment
// StraightPropagator SP(env);
//
// // store the outcome of the Propagate method to paths_
// auto const paths_ = SP.propagate(p0, p10, 1_m);
//
// // perform checks to paths_ components
// for (auto const& path : paths_) {
// CHECK((path.total_time_ / 1_s) - ((34_m / (3 * constants::c)) / 1_s) ==
// Approx(0).margin(absMargin));
// CHECK(path.average_refractive_index_ == Approx(1));
// CHECK(path.emit_.getComponents() == v1.getComponents());
// CHECK(path.receive_.getComponents() == v1.getComponents());
// CHECK(path.R_distance_ == 10_m);
// // CHECK(std::equal(P1.begin(), P1.end(), path.points_.begin(),[]
// // (Point a, Point b) { return (a - b).norm() / 1_m < 1e-5;}));
// //TODO:THINK ABOUT THE POINTS IN THE SIGNALPATH.H
//
//// std::cout << "path.total_time_: " << path.total_time_ << std::endl;
//// std::cout << "path.average_refractive_index_: " << path.average_refractive_index_ << std::endl;
//// std::cout << "path.emit_: " << path.emit_.getComponents() << std::endl;
//// std::cout << "path.R_distance_: " << path.R_distance_ << std::endl;
//
// }
//
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
// CHECK(paths_.size() == 1);
// }
//
// SECTION("Straight Propagator w/ Exponential Refractive Index") {
//
//// logging::set_level(logging::level::info);
//// corsika_logger->set_pattern("[%n:%^%-8l%$] custom pattern: %v");
//
// // create an environment with exponential refractive index (n_0 = 1 & lambda = 0)
// using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium
// <IRefractiveIndexModel<IMediumModel>>>;
//
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// EnvType env1;
//
// //get another coordinate system
// const CoordinateSystemPtr rootCS1 = env1.getCoordinateSystem();
//
// auto Medium1 = EnvType::createNode<Sphere>(
// Point{rootCS1, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
// auto const props1 =
// Medium1
// ->setModelProperties<ExpoRIndex>( 1, 0 / 1_m,
// 1_kg / (1_m * 1_m * 1_m),
// NuclearComposition(
// std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f}));
//
// env1.getUniverse()->addChild(std::move(Medium1));
//
// // get some points
// Point pp0(rootCS1, {0_m, 0_m, 0_m});
//// Point pp1(rootCS1, {0_m, 0_m, 1_m});
//// Point pp2(rootCS1, {0_m, 0_m, 2_m});
//// Point pp3(rootCS1, {0_m, 0_m, 3_m});
//// Point pp4(rootCS1, {0_m, 0_m, 4_m});
//// Point pp5(rootCS1, {0_m, 0_m, 5_m});
//// Point pp6(rootCS1, {0_m, 0_m, 6_m});
//// Point pp7(rootCS1, {0_m, 0_m, 7_m});
//// Point pp8(rootCS1, {0_m, 0_m, 8_m});
//// Point pp9(rootCS1, {0_m, 0_m, 9_m});
// Point pp10(rootCS1, {0_m, 0_m, 10_m});
//
// // get a unit vector
// Vector<dimensionless_d> vv1(rootCS1, {0, 0, 1});
//
// // construct a Straight Propagator given the exponential refractive index environment
// StraightPropagator SP1(env1);
//
// // store the outcome of Propagate method to paths1_
// auto const paths1_ = SP1.propagate(pp0, pp10, 1_m);
//
// // perform checks to paths1_ components (this is just a sketch for now)
// for (auto const& path :paths1_) {
// CHECK( (path.total_time_ / 1_s) - ((34_m / (3 * constants::c)) / 1_s)
// == Approx(0).margin(absMargin) );
// CHECK( path.average_refractive_index_ == Approx(1) );
// CHECK( path.emit_.getComponents() == vv1.getComponents() );
// CHECK( path.receive_.getComponents() == vv1.getComponents() );
// CHECK( path.R_distance_ == 10_m );
// }
//
// CHECK( paths1_.size() == 1 );
//
// /*
// * A second environment with another exponential refractive index
// */
//
// // create an environment with exponential refractive index (n_0 = 2 & lambda = 2)
// using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium
// <IRefractiveIndexModel<IMediumModel>>>;
//
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// EnvType env2;
//
// //get another coordinate system
// const CoordinateSystemPtr rootCS2 = env2.getCoordinateSystem();
//
// auto Medium2 = EnvType::createNode<Sphere>(
// Point{rootCS2, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
// auto const props2 =
// Medium2
// ->setModelProperties<ExpoRIndex>( 2, 2 / 1_m,
// 1_kg / (1_m * 1_m * 1_m),
// NuclearComposition(
// std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f}));
//
// env2.getUniverse()->addChild(std::move(Medium2));
//
// // get some points
// Point ppp0(rootCS2, {0_m, 0_m, 0_m});
// Point ppp10(rootCS2, {0_m, 0_m, 10_m});
//
// // get a unit vector
// Vector<dimensionless_d> vvv1(rootCS2, {0, 0, 1});
//
// // construct a Straight Propagator given the exponential refractive index environment
// StraightPropagator SP2(env2);
//
// // store the outcome of Propagate method to paths1_
// auto const paths2_ = SP2.propagate(ppp0, ppp10, 1_m);
//
// // perform checks to paths1_ components (this is just a sketch for now)
// for (auto const& path :paths2_) {
// CHECK( (path.total_time_ / 1_s) - ((3.177511688_m / (3 * constants::c)) / 1_s)
// == Approx(0).margin(absMargin) );
// CHECK( path.average_refractive_index_ == Approx(0.210275935) );
// CHECK( path.emit_.getComponents() == vvv1.getComponents() );
// CHECK( path.receive_.getComponents() == vvv1.getComponents() );
// CHECK( path.R_distance_ == 10_m );
// }
//
// CHECK( paths2_.size() == 1 );
} // END: TEST_CASE("Radio", "[processes]")