Newer
Older
/*
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <catch2/catch.hpp>
#include <corsika/modules/radio/ZHS.hpp>
#include <corsika/modules/radio/CoREAS.hpp>
#include <corsika/modules/radio/antennas/TimeDomainAntenna.hpp>
#include <corsika/modules/radio/detectors/RadioDetector.hpp>
#include <corsika/modules/radio/propagators/StraightPropagator.hpp>
#include <corsika/modules/radio/propagators/SignalPath.hpp>
#include <corsika/modules/radio/propagators/RadioPropagator.hpp>
#include <vector>
#include <xtensor/xtensor.hpp>
#include <xtensor/xbuilder.hpp>
#include <xtensor/xio.hpp>
#include <xtensor/xcsv.hpp>
#include <istream>
#include <fstream>
#include <iostream>
#include <corsika/media/Environment.hpp>
#include <corsika/media/FlatExponential.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMagneticFieldModel.hpp>
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/media/SlidingPlanarExponential.hpp>
#include <corsika/media/Environment.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMediumModel.hpp>
#include <corsika/media/IRefractiveIndexModel.hpp>
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/UniformRefractiveIndex.hpp>
#include <corsika/media/ExponentialRefractiveIndex.hpp>
#include <corsika/media/VolumeTreeNode.hpp>
#include <corsika/framework/geometry/CoordinateSystem.hpp>
#include <corsika/framework/geometry/Line.hpp>
#include <corsika/framework/geometry/Point.hpp>
#include <corsika/framework/geometry/RootCoordinateSystem.hpp>
#include <corsika/framework/geometry/Vector.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupEnvironment.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/core/PhysicalConstants.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/output/OutputManager.hpp>
using namespace corsika;
double constexpr absMargin = 1.0e-7;
template <typename TInterface>
using MyExtraEnv =
UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<TInterface>>>;
// This serves as a compiler test for any changes in the CoREAS algorithm
// Environment
using EnvironmentInterface =
IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>;
using EnvType = Environment<EnvironmentInterface>;
EnvType envCoREAS;
CoordinateSystemPtr const& rootCSCoREAS = envCoREAS.getCoordinateSystem();
Point const center{rootCSCoREAS, 0_m, 0_m, 0_m};
auto builder = make_layered_spherical_atmosphere_builder<
EnvironmentInterface, MyExtraEnv>::create(center,
constants::EarthRadius::Mean, 1.000327,
Medium::AirDry1Atm,
MagneticFieldVector{rootCSCoREAS, 0_T,
50_uT, 0_T});
builder.setNuclearComposition(
{{Code::Nitrogen, Code::Oxygen},
{0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now
builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km);
builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km);
builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km);
builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km);
builder.addLinearLayer(1e9_cm, 112.8_km);
builder.assemble(envCoREAS);
// now create antennas and detectors
// the antennas location
const auto point1{Point(envCoREAS.getCoordinateSystem(), 100_m, 2_m, 3_m)};
const auto point2{Point(envCoREAS.getCoordinateSystem(), 4_m, 80_m, 6_m)};
const auto point3{Point(envCoREAS.getCoordinateSystem(), 7_m, 8_m, 9_m)};
const auto point4{Point(envCoREAS.getCoordinateSystem(), 5_m, 5_m, 10_m)};
// create times for the antenna
const TimeType t2{10_s};
const InverseTimeType t3{1e+3_Hz};
const TimeType t4{11_s};
// check that I can create an antenna at (1, 2, 3)
TimeDomainAntenna ant1("antenna_name", point1, t1, t2, t3);
TimeDomainAntenna ant2("antenna_name2", point2, t1, t2, t3);
// construct a radio detector instance to store our antennas
AntennaCollection<TimeDomainAntenna> detector;
// add the antennas to the detector
detector.addAntenna(ant1);
detector.addAntenna(ant2);
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// create a particle
auto const particle{Code::Electron};
const auto pmass{get_mass(particle)};
VelocityVector v0(rootCSCoREAS, {5e+2_m / second, 5e+2_m / second, 5e+2_m / second});
Vector B0(rootCSCoREAS, 5_T, 5_T, 5_T);
Line const line(point3, v0);
auto const k{1_m * ((1_m) / ((1_s * 1_s) * 1_V))};
auto const t = 1_s;
LeapFrogTrajectory base(point4, v0, B0, k, t);
// create a new stack for each trial
setup::Stack stack;
// construct an energy
const HEPEnergyType E0{1_TeV};
// compute the necessary momentumn
const HEPMomentumType P0{sqrt(E0 * E0 - pmass * pmass)};
// and create the momentum vector
const auto plab{MomentumVector(rootCSCoREAS, {0_GeV, 0_GeV, P0})};
// and create the location of the particle in this coordinate system
const Point pos(rootCSCoREAS, 50_m, 10_m, 80_m);
// add the particle to the stack
auto const particle1{stack.addParticle(std::make_tuple(particle, plab, pos, 0_ns))};
auto const charge_ {get_charge(particle1.getPID())};
// create a radio process instance using CoREAS
RadioProcess<decltype(detector), CoREAS<decltype(detector), decltype(StraightPropagator(envCoREAS))>, decltype(StraightPropagator(envCoREAS))>
// check doContinuous and simulate methods
coreas.doContinuous(particle1, base, true);
}
// This section serves as a compiler test for any changes in the ZHS algorithm
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Environment
using IModelInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>;
using AtmModel = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<HomogeneousMedium
<IModelInterface>>>>;
using EnvType = Environment<AtmModel>;
EnvType envZHS;
CoordinateSystemPtr const& rootCSZHS = envZHS.getCoordinateSystem();
// get the center point
Point const center{rootCSZHS, 0_m, 0_m, 0_m};
// a refractive index
const double ri_{1.000327};
// the constant density
const auto density{19.2_g / cube(1_cm)};
// the composition we use for the homogeneous medium
NuclearComposition const protonComposition(std::vector<Code>{Code::Proton},
std::vector<float>{1.f});
// create magnetic field vector
Vector B1(rootCSZHS, 0_T, 0_T, 1_T);
auto Medium = EnvType::createNode<Sphere>(
center, 1_km * std::numeric_limits<double>::infinity());
auto const props = Medium->setModelProperties<AtmModel>(ri_, Medium::AirDry1Atm, B1, density, protonComposition);
envZHS.getUniverse()->addChild(std::move(Medium));
// the antennas location
const auto point1{Point(envZHS.getCoordinateSystem(), 100_m, 2_m, 3_m)};
const auto point2{Point(envZHS.getCoordinateSystem(), 4_m, 80_m, 6_m)};
const auto point3{Point(envZHS.getCoordinateSystem(), 7_m, 8_m, 9_m)};
const auto point4{Point(envZHS.getCoordinateSystem(), 5_m, 5_m, 10_m)};
// create times for the antenna
const TimeType t1{0_s};
const TimeType t2{10_s};
const InverseTimeType t3{1e+3_Hz};
const TimeType t4{11_s};
// check that I can create an antenna at (1, 2, 3)
TimeDomainAntenna ant1("antenna_zhs", point1, t1, t2, t3);
TimeDomainAntenna ant2("antenna_zhs2", point2, t1, t2, t3);
// construct a radio detector instance to store our antennas
AntennaCollection<TimeDomainAntenna> detector;
// add the antennas to the detector
detector.addAntenna(ant1);
detector.addAntenna(ant2);
// create a particle
auto const particle{Code::Electron};
const auto pmass{get_mass(particle)};
VelocityVector v0(rootCSZHS, {5e+2_m / second, 5e+2_m / second, 5e+2_m / second});
Vector B0(rootCSZHS, 5_T, 5_T, 5_T);
Line const line(point3, v0);
auto const k{1_m * ((1_m) / ((1_s * 1_s) * 1_V))};
auto const t = 1_s;
LeapFrogTrajectory base(point4, v0, B0, k, t);
// create a new stack for each trial
setup::Stack stack;
// construct an energy
const HEPEnergyType E0{1_TeV};
const HEPMomentumType P0{sqrt(E0 * E0 - pmass * pmass)};
// and create the momentum vector
const auto plab{MomentumVector(rootCSZHS, {0_GeV, 0_GeV, P0})};
// and create the location of the particle in this coordinate system
const Point pos(rootCSZHS, 50_m, 10_m, 80_m);
// add the particle to the stack
auto const particle1{stack.addParticle(std::make_tuple(particle, plab, pos, 0_ns))};
auto const charge_ {get_charge(particle1.getPID())};
// create a radio process instance using CoREAS
RadioProcess<decltype(detector), ZHS<decltype(detector), decltype(StraightPropagator(envZHS))>, decltype(StraightPropagator(envZHS))>
// check doContinuous and simulate methods
zhs.doContinuous(particle1, base, true);
}
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// create a suitable environment ///////////////////////////////////////////////////
using IModelInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>;
using AtmModel = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<HomogeneousMedium
<IModelInterface>>>>;
using EnvType = Environment<AtmModel>;
EnvType env;
CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
// get the center point
Point const center{rootCS, 0_m, 0_m, 0_m};
// a refractive index for the vacuum
const double ri_{1};
// the constant density
const auto density{19.2_g / cube(1_cm)};
// the composition we use for the homogeneous medium
NuclearComposition const Composition(std::vector<Code>{Code::Nitrogen},
std::vector<float>{1.f});
// create magnetic field vector
Vector B1(rootCS, 0_T, 0_T, 0.3809_T);
// create a Sphere for the medium
auto Medium = EnvType::createNode<Sphere>(
center, 1_km * std::numeric_limits<double>::infinity());
// set the environment properties
auto const props = Medium->setModelProperties<AtmModel>(ri_, Medium::AirDry1Atm, B1, density, Composition);
// bind things together
env.getUniverse()->addChild(std::move(Medium));
// now create antennas and the antenna collection
// the antennas location
const auto point1{Point(rootCS, 30000_m, 0_m, 0_m)};
// create times for the antenna
// 30 km antenna
const TimeType start{0.994e-4_s};
const TimeType duration{1.07e-4_s - 0.994e-4_s};
// 3 km antenna
// const TimeType start{0.994e-5_s};
// const TimeType duration{1.7e-5_s - 0.994e-5_s};
const InverseTimeType sampleRate_{5e+11_Hz};
std::cout << "number of points in time: " << duration*sampleRate_ << std::endl;
// create 4 cool antennas
TimeDomainAntenna ant1("cool antenna", point1, start, duration, sampleRate_);
// construct a radio detector instance to store our antennas
AntennaCollection<TimeDomainAntenna> detector;
// add the antennas to the detector
detector.addAntenna(ant1);
// create a new stack for each trial
setup::Stack stack;
stack.clear();
const Code particle{Code::Electron};
const HEPMassType pmass{get_mass(particle)};
// construct an energy // move in the for loop
const HEPEnergyType E0{11.4_MeV};
// construct the output manager
OutputManager outputs("radio_synchrotron_example");
// create a radio process instance using CoREAS (to use ZHS simply change CoREAS with ZHS)
RadioProcess<decltype(detector), CoREAS<decltype(detector), decltype(StraightPropagator(env))>, decltype(StraightPropagator(env))>
coreas(detector, env);
outputs.add("CoREAS", coreas); // register CoREAS with the output manager
// trigger the start of the library and the first event
outputs.startOfLibrary();
outputs.startOfShower();
// the number of points that make up the circle
int const n_points {100000};
LengthType const radius {100_m};
TimeType timeCounter {0._s};
// loop over all the tracks twice (this produces 2 pulses)
for (size_t i = 0; i <= (n_points) * 2; i++) {
Point const point_1(rootCS,{radius*cos(M_PI*2*i/n_points),radius*sin(M_PI*2*i/n_points), 0_m});
Point const point_2(rootCS,{radius*cos(M_PI*2*(i+1)/n_points),radius*sin(M_PI*2*(i+1)/n_points), 0_m});
TimeType t {(point_2 - point_1).getNorm() / (0.999 * constants::c)};
timeCounter = timeCounter + t;
VelocityVector v { (point_2 - point_1) / t };
auto beta {v / constants::c};
auto gamma {E0/pmass};
auto plab {beta * pmass * gamma};
auto particle1{stack.addParticle(std::make_tuple(particle, plab, point_1, timeCounter))};
coreas.doContinuous(particle1,track,true);
// trigger the manager to write the data to disk
outputs.endOfShower();
outputs.endOfLibrary();
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
SECTION("TimeDomainAntenna") {
// create an environment so we can get a coordinate system
using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
EnvType env6;
using UniRIndex =
UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>;
// the antenna location
const auto point1{Point(env6.getCoordinateSystem(), 1_m, 2_m, 3_m)};
const auto point2{Point(env6.getCoordinateSystem(), 4_m, 5_m, 6_m)};
// get a coordinate system
const CoordinateSystemPtr rootCS6 = env6.getCoordinateSystem();
auto Medium6 = EnvType::createNode<Sphere>(
Point{rootCS6, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
auto const props6 = Medium6->setModelProperties<UniRIndex>(
1, 1_kg / (1_m * 1_m * 1_m),
NuclearComposition(
std::vector<Code>{Code::Nitrogen},
std::vector<float>{1.f}));
env6.getUniverse()->addChild(std::move(Medium6));
// create times for the antenna
const TimeType t1{10_s};
const TimeType t2{10_s};
const InverseTimeType t3{1/1_s};
const TimeType t4{11_s};
// check that I can create an antenna at (1, 2, 3)
TimeDomainAntenna ant1("antenna_name", point1, t1, t2, t3);
TimeDomainAntenna ant2("antenna_name2", point2, t4, t2, t3);
// assert that the antenna name is correct
REQUIRE(ant1.getName() == "antenna_name");
REQUIRE(ant2.getName() == "antenna_name2");
// and check that the antenna is at the right location
REQUIRE((ant1.getLocation() - point1).getNorm() < 1e-12 * 1_m);
REQUIRE((ant2.getLocation() - point2).getNorm() < 1e-12 * 1_m);
// construct a radio detector instance to store our antennas
AntennaCollection<TimeDomainAntenna> detector;
// add this antenna to the process
detector.addAntenna(ant1);
detector.addAntenna(ant2);
CHECK(detector.size() == 2);
// get a unit vector
Vector<dimensionless_d> v1(rootCS6, {0, 0, 1});
QuantityVector<ElectricFieldType::dimension_type> v11{10_V / 1_m, 10_V / 1_m, 10_V / 1_m};
Vector<dimensionless_d> v2(rootCS6, {0, 1, 0});
QuantityVector<ElectricFieldType::dimension_type> v22{20_V / 1_m, 20_V / 1_m, 20_V / 1_m};
// use receive methods
ant1.receive(15_s, v1, v11);
ant2.receive(16_s, v2, v22);
// use getWaveform() method
auto [t111, E1] = ant1.getWaveform();
CHECK(E1(5,0) - 10 == 0);
auto [t222, E2] = ant2.getWaveform();
CHECK(E2(5,0) -20 == 0);
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
// // check that I can create working Straight Propagators in different environments
// SECTION("Straight Propagator w/ Uniform Refractive Index") {
//
// // create a suitable environment
// using IModelInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>;
// using AtmModel = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<HomogeneousMedium
// <IModelInterface>>>>;
// using EnvType = Environment<AtmModel>;
// EnvType env;
// CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
// // get the center point
// Point const center{rootCS, 0_m, 0_m, 0_m};
// // a refractive index for the vacuum
// const double ri_{1};
// // the constant density
// const auto density{19.2_g / cube(1_cm)};
// // the composition we use for the homogeneous medium
// NuclearComposition const Composition(std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f});
// // create magnetic field vector
// Vector B1(rootCS, 0_T, 0_T, 0.3809_T);
// // create a Sphere for the medium
// auto Medium = EnvType::createNode<Sphere>(
// center, 1_km * std::numeric_limits<double>::infinity());
// // set the environment properties
// auto const props = Medium->setModelProperties<AtmModel>(ri_, Medium::AirDry1Atm, B1, density, Composition);
// // bind things together
// env.getUniverse()->addChild(std::move(Medium));
//
// // get some points
// Point p0(rootCS, {0_m, 0_m, 0_m});
// Point p1(rootCS, {0_m, 0_m, 1_m});
// Point p2(rootCS, {0_m, 0_m, 2_m});
// Point p3(rootCS, {0_m, 0_m, 3_m});
// Point p4(rootCS, {0_m, 0_m, 4_m});
// Point p5(rootCS, {0_m, 0_m, 5_m});
// Point p6(rootCS, {0_m, 0_m, 6_m});
// Point p7(rootCS, {0_m, 0_m, 7_m});
// Point p8(rootCS, {0_m, 0_m, 8_m});
// Point p9(rootCS, {0_m, 0_m, 9_m});
// Point p10(rootCS, {0_m, 0_m, 10_m});
// // get a unit vector
// Vector<dimensionless_d> v1(rootCS, {0, 0, 1});
// Vector<dimensionless_d> v2(rootCS, {0, 0, -1});
//
// // get a geometrical path of points
// Path P1({p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10});
//
// // construct a Straight Propagator given the uniform refractive index environment
// StraightPropagator SP(env);
// // store the outcome of the Propagate method to paths_
// auto const paths_ = SP.propagate(p0, p10, 1_m);
// // perform checks to paths_ components
// for (auto const& path : paths_) {
// CHECK((path.propagation_time_ / 1_s) - (((p10 - p0).getNorm() / constants::c) / 1_s) == Approx(0));
// CHECK(path.average_refractive_index_ == Approx(1));
// CHECK(path.refractive_index_source_ == Approx(1));
// CHECK(path.refractive_index_destination_ == Approx(1));
// CHECK(path.emit_.getComponents() == v1.getComponents());
// CHECK(path.receive_.getComponents() == v2.getComponents());
// CHECK(path.R_distance_ == 10_m);
// CHECK(std::equal(P1.begin(), P1.end(), Path(path.points_).begin(),[]
// (Point a, Point b) { return (a - b).getNorm() / 1_m < 1e-5;}));
//
// CHECK(paths_.size() == 1);
// }
//
// SECTION("Straight Propagator w/ Exponential Refractive Index") {
//
// // create an environment with exponential refractive index (n_0 = 1 & lambda = 0)
// using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium
// <IRefractiveIndexModel<IMediumModel>>>;
//
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// //get another coordinate system
// const CoordinateSystemPtr rootCS1 = env1.getCoordinateSystem();
// auto Medium1 = EnvType::createNode<Sphere>(
// Point{rootCS1, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
// auto const props1 =
// Medium1
// ->setModelProperties<ExpoRIndex>( 1, 0 / 1_m,
// 1_kg / (1_m * 1_m * 1_m),
// NuclearComposition(
// std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f}));
// env1.getUniverse()->addChild(std::move(Medium1));
//
// // get some points
// Point pp0(rootCS1, {0_m, 0_m, 0_m});
// Point pp1(rootCS1, {0_m, 0_m, 1_m});
// Point pp2(rootCS1, {0_m, 0_m, 2_m});
// Point pp3(rootCS1, {0_m, 0_m, 3_m});
// Point pp4(rootCS1, {0_m, 0_m, 4_m});
// Point pp5(rootCS1, {0_m, 0_m, 5_m});
// Point pp6(rootCS1, {0_m, 0_m, 6_m});
// Point pp7(rootCS1, {0_m, 0_m, 7_m});
// Point pp8(rootCS1, {0_m, 0_m, 8_m});
// Point pp9(rootCS1, {0_m, 0_m, 9_m});
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
// Point pp10(rootCS1, {0_m, 0_m, 10_m});
//
// // get a unit vector
// Vector<dimensionless_d> vv1(rootCS1, {0, 0, 1});
// Vector<dimensionless_d> vv2(rootCS1, {0, 0, -1});
//
// // get a geometrical path of points
// Path P1({pp0,pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8,pp9,pp10});
//
// // construct a Straight Propagator given the exponential refractive index environment
// StraightPropagator SP1(env1);
//
// // store the outcome of Propagate method to paths1_
// auto const paths1_ = SP1.propagate(pp0, pp10, 1_m);
//
// // perform checks to paths1_ components (this is just a sketch for now)
// for (auto const& path :paths1_) {
// CHECK( (path.propagation_time_ / 1_s) - ((34_m / (3 * constants::c)) / 1_s)
// == Approx(0).margin(absMargin) );
// CHECK( path.average_refractive_index_ == Approx(1) );
// CHECK(path.refractive_index_source_ == Approx(1));
// CHECK(path.refractive_index_destination_ == Approx(1));
// CHECK( path.emit_.getComponents() == vv1.getComponents() );
// CHECK( path.receive_.getComponents() == vv2.getComponents() );
// CHECK( path.R_distance_ == 10_m );
// CHECK(std::equal(P1.begin(), P1.end(), Path(path.points_).begin(),[]
// (Point a, Point b) { return (a - b).getNorm() / 1_m < 1e-5;}));
// }
//
// CHECK( paths1_.size() == 1 );
//
// /*
// * A second environment with another exponential refractive index
// */
//
// // create an environment with exponential refractive index (n_0 = 2 & lambda = 2)
// using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium
// <IRefractiveIndexModel<IMediumModel>>>;
//
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// EnvType env2;
//
// //get another coordinate system
// const CoordinateSystemPtr rootCS2 = env2.getCoordinateSystem();
//
// auto Medium2 = EnvType::createNode<Sphere>(
// Point{rootCS2, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
// auto const props2 =
// Medium2
// ->setModelProperties<ExpoRIndex>( 2, 2 / 1_m,
// 1_kg / (1_m * 1_m * 1_m),
// NuclearComposition(
// std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f}));
//
// env2.getUniverse()->addChild(std::move(Medium2));
//
// // get some points
// Point ppp0(rootCS2, {0_m, 0_m, 0_m});
// Point ppp10(rootCS2, {0_m, 0_m, 10_m});
//
// // get a unit vector
// Vector<dimensionless_d> vvv1(rootCS2, {0, 0, 1});
// Vector<dimensionless_d> vvv2(rootCS2, {0, 0, -1});
//
//
// // construct a Straight Propagator given the exponential refractive index environment
// StraightPropagator SP2(env2);
//
// // store the outcome of Propagate method to paths1_
// auto const paths2_ = SP2.propagate(ppp0, ppp10, 1_m);
//
// // perform checks to paths1_ components (this is just a sketch for now)
// for (auto const& path :paths2_) {
// CHECK( (path.propagation_time_ / 1_s) - ((3.177511688_m / (3 * constants::c)) / 1_s)
// == Approx(0).margin(absMargin) );
// CHECK( path.average_refractive_index_ == Approx(0.210275935) );
// CHECK(path.refractive_index_source_ == Approx(2));
//// CHECK(path.refractive_index_destination_ - 0.0000000041 == 0);
// CHECK( path.emit_.getComponents() == vvv1.getComponents() );
// CHECK( path.receive_.getComponents() == vvv2.getComponents() );
// CHECK( path.R_distance_ == 10_m );
// }
//
// CHECK( paths2_.size() == 1 );
//
// }
} // END: TEST_CASE("Radio", "[processes]")