Newer
Older
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/modules/BetheBlochPDG.hpp>
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/Sibyll.hpp>
#include <corsika/modules/StackInspector.hpp>
#include <corsika/modules/TrackWriter.hpp>
#include <corsika/modules/TrackingLine.hpp>
#include <corsika/setup/SetupEnvironment.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <corsika/media/Environment.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <iostream>
#include <limits>
using namespace corsika;
using namespace corsika::setup;
using namespace std;
//
// The example main program for a particle cascade
//
int main() {
const LengthType height_atmosphere = 112.8_km;
feenableexcept(FE_INVALID);
// initialize random number sequence(s)

Antonio Augusto Alves Junior
committed
corsika::RNGManager::getInstance().registerRandomStream("cascade");
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// setup environment, geometry
using EnvType = corsika::Environment<setup::IEnvironmentModel>;
EnvType env;
auto& universe = *(env.GetUniverse());
const CoordinateSystem& rootCS = env.GetCoordinateSystem();
auto outerMedium = EnvType::CreateNode<Sphere>(
Point{rootCS, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
// fraction of oxygen
const float fox = 0.20946;
auto const props =
outerMedium
->SetModelProperties<corsika::HomogeneousMedium<setup::IEnvironmentModel>>(
1_kg / (1_m * 1_m * 1_m),
corsika::NuclearComposition(
std::vector<corsika::Code>{corsika::Code::Nitrogen,
corsika::Code::Oxygen},
std::vector<float>{1.f - fox, fox}));
auto innerMedium = EnvType::CreateNode<Sphere>(Point{rootCS, 0_m, 0_m, 0_m}, 5000_m);
innerMedium->SetModelProperties(props);
outerMedium->AddChild(std::move(innerMedium));
universe.AddChild(std::move(outerMedium));
// setup particle stack, and add primary particle
setup::Stack stack;
stack.Clear();
const Code beamCode = Code::Nucleus;
const int nuclA = 4;
const int nuclZ = int(nuclA / 2.15 + 0.7);
const HEPEnergyType E0 = nuclA * 1_TeV;
double theta = 0.;
double phi = 0.;
Point const injectionPos(
rootCS, 0_m, 0_m,
height_atmosphere); // this is the CORSIKA 7 start of atmosphere/universe
{
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const [px, py, pz] =
momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0);
auto plab = corsika::MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << " phi=" << phi << endl;
cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl;
stack.AddParticle(
std::tuple<corsika::Code, HEPEnergyType, corsika::MomentumVector, corsika::Point,
TimeType, unsigned short, unsigned short>{
beamCode, E0, plab, injectionPos, 0_ns, nuclA, nuclZ});
}
// setup processes, decays and interactions
tracking_line::TrackingLine tracking;
stack_inspector::StackInspector<setup::Stack> stackInspect(1, true, E0);
corsika::RNGManager::getInstance().registerRandomStream("sibyll");

Antonio Augusto Alves Junior
committed
corsika::RNGManager::getInstance().registerRandomStream("pythia");
corsika::sibyll::Interaction sibyll;
corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
corsika::sibyll::Decay decay;
// cascade with only HE model ==> HE cut
corsika::particle_cut::ParticleCut cut(80_GeV);
corsika::track_writer::TrackWriter trackWriter("tracks.dat");
injectionPos, corsika::Vector<dimensionless_d>(rootCS, {0, 0, -1}));
// assemble all processes into an ordered process list
auto sequence = corsika::make_sequence(stackInspect, sibyll, sibyllNuc, decay, eLoss, cut,
trackWriter);
// define air shower object, run simulation
corsika::Cascade EAS(env, tracking, sequence, stack);
EAS.Init();
EAS.Run();
eLoss.PrintProfile(); // print longitudinal profile
cut.ShowResults();
const HEPEnergyType Efinal =
cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
cout << "total dEdX energy (GeV): " << eLoss.GetTotal() / 1_GeV << endl
<< "relative difference (%): " << eLoss.GetTotal() / E0 * 100 << endl;
}