/* * (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/framework/core/Cascade.hpp> #include <corsika/framework/core/PhysicalUnits.hpp> #include <corsika/framework/geometry/Sphere.hpp> #include <corsika/framework/random/RNGManager.hpp> #include <corsika/framework/process/ProcessSequence.hpp> #include <corsika/framework/utility/CorsikaFenv.hpp> #include <corsika/modules/BetheBlochPDG.hpp> #include <corsika/modules/ParticleCut.hpp> #include <corsika/modules/Sibyll.hpp> #include <corsika/modules/StackInspector.hpp> #include <corsika/modules/TrackWriter.hpp> #include <corsika/modules/TrackingLine.hpp> #include <corsika/setup/SetupEnvironment.hpp> #include <corsika/setup/SetupStack.hpp> #include <corsika/setup/SetupTrajectory.hpp> #include <corsika/media/Environment.hpp> #include <corsika/media/HomogeneousMedium.hpp> #include <corsika/media/NuclearComposition.hpp> #include <iostream> #include <limits> using namespace corsika; using namespace corsika::setup; using namespace std; // // The example main program for a particle cascade // int main() { const LengthType height_atmosphere = 112.8_km; feenableexcept(FE_INVALID); // initialize random number sequence(s) corsika::RNGManager::getInstance().registerRandomStream("cascade"); // setup environment, geometry using EnvType = corsika::Environment<setup::IEnvironmentModel>; EnvType env; auto& universe = *(env.GetUniverse()); const CoordinateSystem& rootCS = env.GetCoordinateSystem(); auto outerMedium = EnvType::CreateNode<Sphere>( Point{rootCS, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity()); // fraction of oxygen const float fox = 0.20946; auto const props = outerMedium ->SetModelProperties<corsika::HomogeneousMedium<setup::IEnvironmentModel>>( 1_kg / (1_m * 1_m * 1_m), corsika::NuclearComposition( std::vector<corsika::Code>{corsika::Code::Nitrogen, corsika::Code::Oxygen}, std::vector<float>{1.f - fox, fox})); auto innerMedium = EnvType::CreateNode<Sphere>(Point{rootCS, 0_m, 0_m, 0_m}, 5000_m); innerMedium->SetModelProperties(props); outerMedium->AddChild(std::move(innerMedium)); universe.AddChild(std::move(outerMedium)); // setup particle stack, and add primary particle setup::Stack stack; stack.Clear(); const Code beamCode = Code::Nucleus; const int nuclA = 4; const int nuclZ = int(nuclA / 2.15 + 0.7); const HEPMassType mass = nucleus_mass(nuclA, nuclZ); const HEPEnergyType E0 = nuclA * 1_TeV; double theta = 0.; double phi = 0.; Point const injectionPos( rootCS, 0_m, 0_m, height_atmosphere); // this is the CORSIKA 7 start of atmosphere/universe { auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) { return sqrt((Elab - m) * (Elab + m)); }; HEPMomentumType P0 = elab2plab(E0, mass); auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) { return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi), -ptot * cos(theta)); }; auto const [px, py, pz] = momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0); auto plab = corsika::MomentumVector(rootCS, {px, py, pz}); cout << "input particle: " << beamCode << endl; cout << "input angles: theta=" << theta << " phi=" << phi << endl; cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl; stack.AddParticle( std::tuple<corsika::Code, HEPEnergyType, corsika::MomentumVector, corsika::Point, TimeType, unsigned short, unsigned short>{ beamCode, E0, plab, injectionPos, 0_ns, nuclA, nuclZ}); } // setup processes, decays and interactions tracking_line::TrackingLine tracking; stack_inspector::StackInspector<setup::Stack> stackInspect(1, true, E0); corsika::RNGManager::getInstance().registerRandomStream("sibyll"); corsika::RNGManager::getInstance().registerRandomStream("pythia"); corsika::sibyll::Interaction sibyll; corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env); corsika::sibyll::Decay decay; // cascade with only HE model ==> HE cut corsika::particle_cut::ParticleCut cut(80_GeV); corsika::track_writer::TrackWriter trackWriter("tracks.dat"); corsika::energy_loss::BetheBlochPDG eLoss( injectionPos, corsika::Vector<dimensionless_d>(rootCS, {0, 0, -1})); // assemble all processes into an ordered process list auto sequence = corsika::make_sequence(stackInspect, sibyll, sibyllNuc, decay, eLoss, cut, trackWriter); // define air shower object, run simulation corsika::Cascade EAS(env, tracking, sequence, stack); EAS.Init(); EAS.Run(); eLoss.PrintProfile(); // print longitudinal profile cut.ShowResults(); const HEPEnergyType Efinal = cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy(); cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl << "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl; cout << "total dEdX energy (GeV): " << eLoss.GetTotal() / 1_GeV << endl << "relative difference (%): " << eLoss.GetTotal() / E0 * 100 << endl; }