Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/cascade/Cascade.h>
#include <corsika/environment/Environment.h>
#include <corsika/environment/LayeredSphericalAtmosphereBuilder.h>
#include <corsika/environment/NuclearComposition.h>
#include <corsika/environment/ShowerAxis.h>
#include <corsika/geometry/Plane.h>
#include <corsika/geometry/Sphere.h>
#include <corsika/process/ProcessSequence.h>
#include <corsika/process/StackProcess.h>
#include <corsika/process/longitudinal_profile/LongitudinalProfile.h>
#include <corsika/process/observation_plane/ObservationPlane.h>
#include <corsika/process/particle_cut/ParticleCut.h>
#include <corsika/process/proposal/ContinuousProcess.h>
#include <corsika/process/proposal/Interaction.h>
#include <corsika/process/track_writer/TrackWriter.h>
#include <corsika/process/tracking_line/TrackingLine.h>
#include <corsika/random/RNGManager.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/units/PhysicalUnits.h>
#include <corsika/utl/CorsikaFenv.h>
#include <corsika/process/interaction_counter/InteractionCounter.hpp>
#include <corsika/logging/Logging.h>
#include <iomanip>
#include <iostream>
#include <limits>
#include <string>
#include <typeinfo>
using namespace corsika;
using namespace corsika::process;
using namespace corsika::units;
using namespace corsika::particles;
using namespace corsika::random;
using namespace corsika::geometry;
using namespace corsika::environment;
using namespace std;
using namespace corsika::units::si;
void registerRandomStreams() {
random::RNGManager::GetInstance().RegisterRandomStream("cascade");
random::RNGManager::GetInstance().RegisterRandomStream("proposal");
random::RNGManager::GetInstance().SeedAll();
}
template <typename T>
using MyExtraEnv = environment::MediumPropertyModel<environment::UniformMagneticField<T>>;
int main(int argc, char** argv) {
logging::SetLevel(logging::level::info);
if (argc != 2) {
std::cerr << "usage: em_shower <energy/GeV>" << std::endl;
return 1;
}
feenableexcept(FE_INVALID);
// initialize random number sequence(s)
registerRandomStreams();
// setup environment, geometry
using EnvType = setup::Environment;
EnvType env;
const CoordinateSystem& rootCS = env.GetCoordinateSystem();
Point const center{rootCS, 0_m, 0_m, 0_m};
auto builder = environment::make_layered_spherical_atmosphere_builder<
setup::EnvironmentInterface,
MyExtraEnv>::create(center, units::constants::EarthRadius::Mean,
environment::Medium::AirDry1Atm,
geometry::Vector{rootCS, 0_T, 0_T, 1_T});
builder.setNuclearComposition(
{{particles::Code::Nitrogen, particles::Code::Oxygen},
{0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now
builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km);
builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km);
builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km);
builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km);
builder.addLinearLayer(1e9_cm, 112.8_km);
builder.assemble(env);
// setup particle stack, and add primary particle
setup::Stack stack;
stack.Clear();
const Code beamCode = Code::Electron;
auto const mass = particles::GetMass(beamCode);
const HEPEnergyType E0 = 1_GeV * std::stof(std::string(argv[1]));
double theta = 0.;
auto const thetaRad = theta / 180. * M_PI;
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double thetaRad, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(thetaRad), 0_eV, -ptot * cos(thetaRad));
};
auto const [px, py, pz] = momentumComponents(thetaRad, P0);
auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << endl;
cout << "input momentum: " << plab.GetComponents() / 1_GeV << ", norm = " << plab.norm()
<< endl;
auto const observationHeight = 1.4_km + builder.getEarthRadius();
auto const injectionHeight = 112.75_km + builder.getEarthRadius();
auto const t = -observationHeight * cos(thetaRad) +
sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) +
static_pow<2>(injectionHeight));
Point const showerCore{rootCS, 0_m, 0_m, observationHeight};
Point const injectionPos =
showerCore +
Vector<dimensionless_d>{rootCS, {-sin(thetaRad), 0, cos(thetaRad)}} * t;
std::cout << "point of injection: " << injectionPos.GetCoordinates() << std::endl;
stack.AddParticle(
std::tuple<particles::Code, units::si::HEPEnergyType,
corsika::stack::MomentumVector, geometry::Point, units::si::TimeType>{
beamCode, E0, plab, injectionPos, 0_ns});
std::cout << "shower axis length: " << (showerCore - injectionPos).norm() * 1.02
<< std::endl;
environment::ShowerAxis const showerAxis{injectionPos,
(showerCore - injectionPos) * 1.02, env};
// setup processes, decays and interactions
// PROPOSAL processs proposal{...};
process::particle_cut::ParticleCut cut(10_GeV, false, true);
process::proposal::Interaction proposal(env, cut.GetECut());
process::proposal::ContinuousProcess em_continuous(env, cut.GetECut());
process::interaction_counter::InteractionCounter proposalCounted(proposal);
process::track_writer::TrackWriter trackWriter("tracks.dat");
// long. profile; columns for gamma, e+, e- still need to be added
process::longitudinal_profile::LongitudinalProfile longprof{showerAxis};
Plane const obsPlane(showerCore, Vector<dimensionless_d>(rootCS, {0., 0., 1.}));
process::observation_plane::ObservationPlane observationLevel(obsPlane,
"particles.dat");
auto sequence = process::sequence(proposalCounted, em_continuous, longprof, cut,
observationLevel, trackWriter);
// define air shower object, run simulation
tracking_line::TrackingLine tracking;
cascade::Cascade EAS(env, tracking, sequence, stack);
// to fix the point of first interaction, uncomment the following two lines:
// EAS.SetNodes();
// EAS.forceInteraction();
EAS.Run();
cut.ShowResults();
em_continuous.showResults();
observationLevel.ShowResults();
const HEPEnergyType Efinal = cut.GetCutEnergy() + cut.GetInvEnergy() +
cut.GetEmEnergy() + em_continuous.energyLost() +
observationLevel.GetEnergyGround();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
observationLevel.Reset();
cut.Reset();
em_continuous.reset();
auto const hists = proposalCounted.GetHistogram();
hists.saveLab("inthist_lab_emShower.npz");
hists.saveCMS("inthist_cms_emShower.npz");
longprof.save("longprof_emShower.txt");
}