/* * (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/cascade/Cascade.h> #include <corsika/environment/Environment.h> #include <corsika/environment/LayeredSphericalAtmosphereBuilder.h> #include <corsika/environment/NuclearComposition.h> #include <corsika/environment/ShowerAxis.h> #include <corsika/geometry/Plane.h> #include <corsika/geometry/Sphere.h> #include <corsika/process/ProcessSequence.h> #include <corsika/process/StackProcess.h> #include <corsika/process/longitudinal_profile/LongitudinalProfile.h> #include <corsika/process/observation_plane/ObservationPlane.h> #include <corsika/process/particle_cut/ParticleCut.h> #include <corsika/process/proposal/ContinuousProcess.h> #include <corsika/process/proposal/Interaction.h> #include <corsika/process/track_writer/TrackWriter.h> #include <corsika/process/tracking_line/TrackingLine.h> #include <corsika/random/RNGManager.h> #include <corsika/setup/SetupStack.h> #include <corsika/setup/SetupTrajectory.h> #include <corsika/units/PhysicalUnits.h> #include <corsika/utl/CorsikaFenv.h> #include <corsika/process/interaction_counter/InteractionCounter.hpp> #include <corsika/logging/Logging.h> #include <iomanip> #include <iostream> #include <limits> #include <string> #include <typeinfo> using namespace corsika; using namespace corsika::process; using namespace corsika::units; using namespace corsika::particles; using namespace corsika::random; using namespace corsika::geometry; using namespace corsika::environment; using namespace std; using namespace corsika::units::si; void registerRandomStreams() { random::RNGManager::GetInstance().RegisterRandomStream("cascade"); random::RNGManager::GetInstance().RegisterRandomStream("proposal"); random::RNGManager::GetInstance().SeedAll(); } template <typename T> using MyExtraEnv = environment::MediumPropertyModel<environment::UniformMagneticField<T>>; int main(int argc, char** argv) { logging::SetLevel(logging::level::info); if (argc != 2) { std::cerr << "usage: em_shower <energy/GeV>" << std::endl; return 1; } feenableexcept(FE_INVALID); // initialize random number sequence(s) registerRandomStreams(); // setup environment, geometry using EnvType = setup::Environment; EnvType env; const CoordinateSystem& rootCS = env.GetCoordinateSystem(); Point const center{rootCS, 0_m, 0_m, 0_m}; auto builder = environment::make_layered_spherical_atmosphere_builder< setup::EnvironmentInterface, MyExtraEnv>::create(center, units::constants::EarthRadius::Mean, environment::Medium::AirDry1Atm, geometry::Vector{rootCS, 0_T, 0_T, 1_T}); builder.setNuclearComposition( {{particles::Code::Nitrogen, particles::Code::Oxygen}, {0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km); builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km); builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km); builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km); builder.addLinearLayer(1e9_cm, 112.8_km); builder.assemble(env); // setup particle stack, and add primary particle setup::Stack stack; stack.Clear(); const Code beamCode = Code::Electron; auto const mass = particles::GetMass(beamCode); const HEPEnergyType E0 = 1_GeV * std::stof(std::string(argv[1])); double theta = 0.; auto const thetaRad = theta / 180. * M_PI; auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) { return sqrt((Elab - m) * (Elab + m)); }; HEPMomentumType P0 = elab2plab(E0, mass); auto momentumComponents = [](double thetaRad, HEPMomentumType ptot) { return std::make_tuple(ptot * sin(thetaRad), 0_eV, -ptot * cos(thetaRad)); }; auto const [px, py, pz] = momentumComponents(thetaRad, P0); auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz}); cout << "input particle: " << beamCode << endl; cout << "input angles: theta=" << theta << endl; cout << "input momentum: " << plab.GetComponents() / 1_GeV << ", norm = " << plab.norm() << endl; auto const observationHeight = 1.4_km + builder.getEarthRadius(); auto const injectionHeight = 112.75_km + builder.getEarthRadius(); auto const t = -observationHeight * cos(thetaRad) + sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) + static_pow<2>(injectionHeight)); Point const showerCore{rootCS, 0_m, 0_m, observationHeight}; Point const injectionPos = showerCore + Vector<dimensionless_d>{rootCS, {-sin(thetaRad), 0, cos(thetaRad)}} * t; std::cout << "point of injection: " << injectionPos.GetCoordinates() << std::endl; stack.AddParticle( std::tuple<particles::Code, units::si::HEPEnergyType, corsika::stack::MomentumVector, geometry::Point, units::si::TimeType>{ beamCode, E0, plab, injectionPos, 0_ns}); std::cout << "shower axis length: " << (showerCore - injectionPos).norm() * 1.02 << std::endl; environment::ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.02, env}; // setup processes, decays and interactions // PROPOSAL processs proposal{...}; process::particle_cut::ParticleCut cut(10_GeV, false, true); process::proposal::Interaction proposal(env, cut.GetECut()); process::proposal::ContinuousProcess em_continuous(env, cut.GetECut()); process::interaction_counter::InteractionCounter proposalCounted(proposal); process::track_writer::TrackWriter trackWriter("tracks.dat"); // long. profile; columns for gamma, e+, e- still need to be added process::longitudinal_profile::LongitudinalProfile longprof{showerAxis}; Plane const obsPlane(showerCore, Vector<dimensionless_d>(rootCS, {0., 0., 1.})); process::observation_plane::ObservationPlane observationLevel(obsPlane, "particles.dat"); auto sequence = process::sequence(proposalCounted, em_continuous, longprof, cut, observationLevel, trackWriter); // define air shower object, run simulation tracking_line::TrackingLine tracking; cascade::Cascade EAS(env, tracking, sequence, stack); // to fix the point of first interaction, uncomment the following two lines: // EAS.SetNodes(); // EAS.forceInteraction(); EAS.Run(); cut.ShowResults(); em_continuous.showResults(); observationLevel.ShowResults(); const HEPEnergyType Efinal = cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy() + em_continuous.energyLost() + observationLevel.GetEnergyGround(); cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl << "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl; observationLevel.Reset(); cut.Reset(); em_continuous.reset(); auto const hists = proposalCounted.GetHistogram(); hists.saveLab("inthist_lab_emShower.npz"); hists.saveCMS("inthist_cms_emShower.npz"); longprof.save("longprof_emShower.txt"); }