Newer
Older
/**
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/cascade/Cascade.h>
#include <corsika/process/ProcessSequence.h>
#include <corsika/process/stack_inspector/StackInspector.h>
#include <corsika/process/tracking_line/TrackingLine.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/random/RNGManager.h>
#include <corsika/process/sibyll/ParticleConversion.h>
#include <corsika/process/sibyll/ProcessDecay.h>
#include <corsika/units/PhysicalUnits.h>
Felix Riehn
committed
using namespace corsika;
using namespace corsika::process;
using namespace corsika::units;
using namespace corsika::particles;
using namespace corsika::random;
#include <iostream>
using namespace std;
static int fCount = 0;
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
static EnergyType fEnergy = 0. * 1_GeV;
// FOR NOW: global static variables for ParticleCut process
// this is just wrong...
static EnergyType fEmEnergy;
static int fEmCount;
static EnergyType fInvEnergy;
static int fInvCount;
class ProcessEMCut : public corsika::process::BaseProcess<ProcessEMCut> {
public:
ProcessEMCut() {}
template <typename Particle>
bool isBelowEnergyCut( Particle &p ) const
{
// FOR NOW: center-of-mass energy hard coded
const EnergyType Ecm = sqrt( 2. * p.GetEnergy() * 0.93827_GeV );
if( p.GetEnergy() < 50_GeV || Ecm < 10_GeV )
return true;
else
return false;
}
bool isEmParticle( Code pCode ) const
{
bool is_em = false;
// FOR NOW: switch
switch( pCode ){
case Code::Electron :
is_em = true;
break;
case Code::Gamma :
is_em = true;
break;
default:
break;
}
return is_em;
}
void defineEmParticles() const
{
// create bool array identifying em particles
}
bool isInvisible( Code pCode ) const
{
bool is_inv = false;
// FOR NOW: switch
switch( pCode ){
case Code::NuE :
is_inv = true;
break;
case Code::NuEBar :
is_inv = true;
break;
case Code::NuMu :
is_inv = true;
break;
case Code::NuMuBar :
is_inv = true;
break;
case Code::MuPlus :
is_inv = true;
break;
case Code::MuMinus :
is_inv = true;
break;
default:
break;
}
return is_inv;
}
template <typename Particle>
double MinStepLength(Particle& p, setup::Trajectory&) const
{
const Code pid = p.GetPID();
if( isEmParticle( pid ) || isInvisible( pid ) ){
cout << "ProcessCut: MinStep: next cut: " << 0. << endl;
return 0.;
} else {
double next_step = std::numeric_limits<double>::infinity();
cout << "ProcessCut: MinStep: next cut: " << next_step << endl;
return next_step;
}
}
template <typename Particle, typename Stack>
EProcessReturn DoContinuous(Particle&p, setup::Trajectory&t, Stack&s) const {
// cout << "ProcessCut: DoContinous: " << p.GetPID() << endl;
// cout << " is em: " << isEmParticle( p.GetPID() ) << endl;
// cout << " is inv: " << isInvisible( p.GetPID() ) << endl;
// const Code pid = p.GetPID();
// if( isEmParticle( pid ) ){
// cout << "removing em. particle..." << endl;
// fEmEnergy += p.GetEnergy();
// fEmCount += 1;
// p.Delete();
// return EProcessReturn::eParticleAbsorbed;
// }
// if ( isInvisible( pid ) ){
// cout << "removing inv. particle..." << endl;
// fInvEnergy += p.GetEnergy();
// fInvCount += 1;
// p.Delete();
// return EProcessReturn::eParticleAbsorbed;
// }
return EProcessReturn::eOk;
}
template <typename Particle, typename Stack>
void DoDiscrete(Particle& p, Stack& s) const
{
cout << "ProcessCut: DoDiscrete: " << p.GetPID() << endl;
const Code pid = p.GetPID();
if( isEmParticle( pid ) ){
cout << "removing em. particle..." << endl;
fEmEnergy += p.GetEnergy();
fEmCount += 1;
p.Delete();
}
else if ( isInvisible( pid ) ){
cout << "removing inv. particle..." << endl;
fInvEnergy += p.GetEnergy();
fInvCount += 1;
p.Delete();
}
else if( isBelowEnergyCut( p ) ){
cout << "removing low en. particle..." << endl;
fEnergy += p.GetEnergy();
fCount += 1;
p.Delete();
}
}
void Init()
{
fEmEnergy = 0. * 1_GeV;
fEmCount = 0;
fInvEnergy = 0. * 1_GeV;
fInvCount = 0;
fEnergy = 0. * 1_GeV;
//defineEmParticles();
}
void ShowResults(){
cout << " ******************************" << endl
<< " ParticleCut: " << endl
<< " energy in em. component (GeV): " << fEmEnergy / 1_GeV << endl
<< " no. of em. particles injected: " << fEmCount << endl
<< " energy in inv. component (GeV): " << fInvEnergy / 1_GeV << endl
<< " no. of inv. particles injected: " << fInvCount << endl
<< " ******************************" << endl;
}
EnergyType GetInvEnergy()
{
return fInvEnergy;
}
EnergyType GetCutEnergy()
{
return fEnergy;
}
EnergyType GetEmEnergy()
{
return fEmEnergy;
}
private:
};
class ProcessSplit : public corsika::process::BaseProcess<ProcessSplit> {
public:
ProcessSplit() {}
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
void setTrackedParticlesStable() const {
/*
Sibyll is hadronic generator
only hadrons decay
*/
// set particles unstable
corsika::process::sibyll::setHadronsUnstable();
// make tracked particles stable
std::cout << "ProcessSplit: setting tracked hadrons stable.." << std::endl;
setup::Stack ds;
ds.NewParticle().SetPID(Code::PiPlus);
ds.NewParticle().SetPID(Code::PiMinus);
ds.NewParticle().SetPID(Code::KPlus);
ds.NewParticle().SetPID(Code::KMinus);
ds.NewParticle().SetPID(Code::K0Long);
ds.NewParticle().SetPID(Code::K0Short);
for (auto& p : ds) {
int s_id = process::sibyll::ConvertToSibyllRaw(p.GetPID());
// set particle stable by setting table value negative
// cout << "ProcessSplit: doDiscrete: setting " << p.GetPID() << "(" << s_id << ")"
// << " stable in Sibyll .." << endl;
s_csydec_.idb[s_id - 1] = (-1) * abs( s_csydec_.idb[s_id - 1] );
p.Delete();
}
}
double MinStepLength(Particle& p, setup::Trajectory&) const {
Felix Riehn
committed
// coordinate system, get global frame of reference
CoordinateSystem& rootCS = RootCoordinateSystem::GetInstance().GetRootCS();
Felix Riehn
committed
const Code corsikaBeamId = p.GetPID();
// beam particles for sibyll : 1, 2, 3 for p, pi, k
Felix Riehn
committed
// read from cross section code table
Felix Riehn
committed
int kBeam = process::sibyll::GetSibyllXSCode( corsikaBeamId );
Felix Riehn
committed
bool kInteraction = process::sibyll::CanInteract( corsikaBeamId );
/*
the target should be defined by the Environment,
and the boosts can be defined..
*/
// FOR NOW: assume target is oxygen
Felix Riehn
committed
int kTarget = 16;
// proton mass in units of energy
const EnergyType proton_mass_en = 0.93827_GeV ;
EnergyType Etot = p.GetEnergy() + kTarget * proton_mass_en;
super_stupid::MomentumVector Ptot(rootCS, {0.0_newton_second, 0.0_newton_second, 0.0_newton_second});
// FOR NOW: assume target is at rest
super_stupid::MomentumVector pTarget(rootCS, {0.0_newton_second, 0.0_newton_second, 0.0_newton_second});
Ptot += p.GetMomentum();
Ptot += pTarget;
// calculate cm. energy
EnergyType sqs = sqrt( Etot * Etot - Ptot.squaredNorm() * si::constants::cSquared );
double Ecm = sqs / 1_GeV;
Felix Riehn
committed
std::cout << "ProcessSplit: " << "MinStep: input en: " << p.GetEnergy() / 1_GeV << endl
<< " beam can interact:" << kBeam<< endl
<< " beam XS code:" << kBeam << endl
<< " beam pid:" << p.GetPID() << endl
Felix Riehn
committed
<< " target mass number:" << kTarget << std::endl;
double next_step;
if(kInteraction){
double prodCrossSection,dummy,dum1,dum2,dum3,dum4;
double dumdif[3];
if(kTarget==1)
sib_sigma_hp_(kBeam, Ecm, dum1, dum2, prodCrossSection, dumdif,dum3, dum4 );
Felix Riehn
committed
else
sib_sigma_hnuc_(kBeam, kTarget, Ecm, prodCrossSection, dummy );
Felix Riehn
committed
std::cout << "ProcessSplit: " << "MinStep: sibyll return: " << prodCrossSection << std::endl;
CrossSectionType sig = prodCrossSection * 1_mbarn;
std::cout << "ProcessSplit: " << "MinStep: CrossSection (mb): " << sig / 1_mbarn << std::endl;
const MassType nucleon_mass = 0.93827_GeV / corsika::units::si::constants::cSquared;
std::cout << "ProcessSplit: " << "nucleon mass " << nucleon_mass << std::endl;
// calculate interaction length in medium
double int_length = kTarget * ( nucleon_mass / 1_g ) / ( sig / 1_cmeter / 1_cmeter );
// pick random step lenth
std::cout << "ProcessSplit: " << "interaction length (g/cm2): " << int_length << std::endl;
// add exponential sampling
int a = 0;
next_step = -int_length * log(s_rndm_(a));
}else
#warning define infinite interaction length? then we can skip the test in DoDiscrete()
next_step = std::numeric_limits<double>::infinity();
Felix Riehn
committed
/*
what are the units of the output? slant depth or 3space length?
<< "next interaction (g/cm2): " << next_step << std::endl;
Felix Riehn
committed
EProcessReturn DoContinuous(Particle&, setup::Trajectory&, Stack&) const {
// corsika::utls::ignore(p);
return EProcessReturn::eOk;
}
template <typename Particle, typename Stack>
void DoDiscrete(Particle& p, Stack& s) const {
cout << "ProcessSplit: " << "DoDiscrete: " << p.GetPID() << " interaction? " << process::sibyll::CanInteract( p.GetPID() ) << endl;
Felix Riehn
committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
if( process::sibyll::CanInteract( p.GetPID() ) ){
cout << "defining coordinates" << endl;
// coordinate system, get global frame of reference
CoordinateSystem& rootCS = RootCoordinateSystem::GetInstance().GetRootCS();
QuantityVector<length_d> const coordinates{0_m, 0_m, 0_m};
Point pOrig(rootCS, coordinates);
/*
the target should be defined by the Environment,
ideally as full particle object so that the four momenta
and the boosts can be defined..
here we need: GetTargetMassNumber() or GetTargetPID()??
GetTargetMomentum() (zero in EAS)
*/
// FOR NOW: set target to proton
int kTarget = 1; //p.GetPID();
// proton mass in units of energy
const EnergyType proton_mass_en = 0.93827_GeV ; //0.93827_GeV / si::constants::cSquared ;
cout << "defining target momentum.." << endl;
// FOR NOW: target is always at rest
const EnergyType Etarget = 0. * 1_GeV + proton_mass_en;
const auto pTarget = super_stupid::MomentumVector(rootCS, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c);
cout << "target momentum (GeV/c): " << pTarget.GetComponents() / 1_GeV * si::constants::c << endl;
// const auto pBeam = super_stupid::MomentumVector(rootCS, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c);
// cout << "beam momentum: " << pBeam.GetComponents() << endl;
cout << "beam momentum (GeV/c): " << p.GetMomentum().GetComponents() / 1_GeV * si::constants::c << endl;
Felix Riehn
committed
stack is in GeV in lab. frame
convert to GeV in cm. frame
(assuming proton at rest as target AND
assuming no pT, i.e. shower frame-z is aligned with hadron-int-frame-z)
Felix Riehn
committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
// cout << "defining total energy" << endl;
// total energy: E_beam + E_target
// in lab. frame: E_beam + m_target*c**2
EnergyType E = p.GetEnergy();
EnergyType Etot = E + Etarget;
// cout << "tot. energy: " << Etot / 1_GeV << endl;
// cout << "defining total momentum" << endl;
// total momentum
super_stupid::MomentumVector Ptot = p.GetMomentum(); // + pTarget;
// cout << "tot. momentum: " << Ptot.GetComponents() / 1_GeV * si::constants::c << endl;
// cout << "inv. mass.." << endl;
// invariant mass, i.e. cm. energy
EnergyType Ecm = sqrt( Etot * Etot - Ptot.squaredNorm() * si::constants::cSquared ); //sqrt( 2. * E * 0.93827_GeV );
// cout << "inv. mass: " << Ecm / 1_GeV << endl;
// cout << "boost parameters.." << endl;
/*
get transformation between Stack-frame and SibStack-frame
for EAS Stack-frame is lab. frame, could be different for CRMC-mode
the transformation should be derived from the input momenta
*/
// const double gamma = ( E + proton_mass * si::constants::cSquared ) / Ecm ;
// const double gambet = sqrt( E * E - proton_mass * proton_mass ) / Ecm;
const double gamma = Etot / Ecm ;
const auto gambet = Ptot / (Ecm / si::constants::c );
std::cout << "ProcessSplit: " << " DoDiscrete: gamma:" << gamma << endl;
std::cout << "ProcessSplit: " << " DoDiscrete: gambet:" << gambet.GetComponents() << endl;
int kBeam = process::sibyll::ConvertToSibyllRaw( p.GetPID() );
std::cout << "ProcessSplit: " << " DoDiscrete: E(GeV):" << E / 1_GeV << " Ecm(GeV): " << Ecm / 1_GeV << std::endl;
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
if (E < 8.5_GeV || Ecm < 10_GeV ) {
std::cout << "ProcessSplit: " << " DoDiscrete: low en. particle, skipping.." << std::endl;
// std::cout << "ProcessSplit: " << " DoDiscrete: dropping particle.." << std::endl;
//fEnergy += p.GetEnergy();
//p.Delete();
//fCount++;
} else {
// Sibyll does not know about units..
double sqs = Ecm / 1_GeV;
// running sibyll, filling stack
sibyll_( kBeam, kTarget, sqs);
// running decays
setTrackedParticlesStable();
decsib_();
// print final state
int print_unit = 6;
sib_list_( print_unit );
// delete current particle
p.Delete();
// add particles from sibyll to stack
// link to sibyll stack
SibStack ss;
// SibStack does not know about momentum yet so we need counter to access momentum array in Sibyll
int i = -1;
super_stupid::MomentumVector Ptot_final(rootCS, {0.0_newton_second, 0.0_newton_second, 0.0_newton_second});
for (auto &psib: ss){
++i;
// skip particles that have decayed in Sibyll
if( abs(s_plist_.llist[ i ]) > 100 ) continue;
//transform energy to lab. frame, primitve
// compute beta_vec * p_vec
// arbitrary Lorentz transformation based on sibyll routines
const auto gammaBetaComponents = gambet.GetComponents();
const auto pSibyllComponents = psib.GetMomentum().GetComponents();
EnergyType en_lab = 0. * 1_GeV;
MomentumType p_lab_components[3];
en_lab = psib.GetEnergy() * gamma;
EnergyType pnorm = 0. * 1_GeV;
for(int j=0; j<3; ++j)
pnorm += ( pSibyllComponents[j] * gammaBetaComponents[j] * si::constants::c ) / ( gamma + 1.);
pnorm += psib.GetEnergy();
Felix Riehn
committed
for(int j=0; j<3; ++j){
p_lab_components[j] = pSibyllComponents[j] - (-1) * pnorm * gammaBetaComponents[j] / si::constants::c;
// cout << "p:" << j << " pSib (GeV/c): " << pSibyllComponents[j] / 1_GeV * si::constants::c
// << " gb: " << gammaBetaComponents[j] << endl;
en_lab -= (-1) * pSibyllComponents[j] * gammaBetaComponents[j] * si::constants::c;
}
// const EnergyType en_lab = psib.GetEnergy()*gamma + gambet * psib.GetMomentum() * si::constants::c );
// cout << " en cm (GeV): " << psib.GetEnergy() / 1_GeV << endl
// << " en lab (GeV): " << en_lab / 1_GeV << endl;
// cout << " pz cm (GeV/c): " << psib.GetMomentum().GetComponents()[2] / 1_GeV * si::constants::c << endl
// << " pz lab (GeV/c): " << p_lab_components[2] / 1_GeV * si::constants::c << endl;
Felix Riehn
committed
// add to corsika stack
auto pnew = s.NewParticle();
pnew.SetEnergy( en_lab );
pnew.SetPID( process::sibyll::ConvertFromSibyll( psib.GetPID() ) );
//cout << "momentum sib (cm): " << psib.GetMomentum().GetComponents() / 1_GeV * si::constants::c << endl;
Felix Riehn
committed
corsika::geometry::QuantityVector<momentum_d> p_lab_c{ p_lab_components[0],
p_lab_components[1],
p_lab_components[2]};
pnew.SetMomentum( super_stupid::MomentumVector( rootCS, p_lab_c) );
//cout << "momentum sib (lab): " << pnew.GetMomentum().GetComponents() / 1_GeV * si::constants::c << endl;
//cout << "s_cm (GeV2): " << (psib.GetEnergy() * psib.GetEnergy() - psib.GetMomentum().squaredNorm() * si::constants::cSquared ) / 1_GeV / 1_GeV << endl;
//cout << "s_lab (GeV2): " << (pnew.GetEnergy() * pnew.GetEnergy() - pnew.GetMomentum().squaredNorm() * si::constants::cSquared ) / 1_GeV / 1_GeV << endl;
Ptot_final += pnew.GetMomentum();
}
//cout << "tot. momentum final (GeV/c): " << Ptot_final.GetComponents() / 1_GeV * si::constants::c << endl;
// define reference frame? --> defines boosts between corsika stack and model stack.
// initialize random numbers for sibyll
// FOR NOW USE SIBYLL INTERNAL !!!
corsika::random::RNGManager& rmng = corsika::random::RNGManager::GetInstance();
;
const std::string str_name = "s_rndm";
rmng.RegisterRandomStream(str_name);
// // corsika::random::RNG srng;
// auto srng = rmng.GetRandomStream("s_rndm");
// test random number generator
std::cout << "ProcessSplit: "
<< " test sequence of random numbers." << std::endl;
for (int i = 0; i < 8; ++i) std::cout << i << " " << s_rndm_(a) << std::endl;
// initialize Sibyll
setTrackedParticlesStable();
int GetCount() { return fCount; }
double s_rndm_(int&) {
static corsika::random::RNG& rmng =
corsika::random::RNGManager::GetInstance().GetRandomStream("s_rndm");
;
return rmng() / (double)rmng.max();
Felix Riehn
committed
CoordinateSystem& rootCS = RootCoordinateSystem::GetInstance().GetRootCS();
tracking_line::TrackingLine<setup::Stack> tracking;
stack_inspector::StackInspector<setup::Stack> p0(true);
corsika::process::sibyll::ProcessDecay p2;
ProcessEMCut p3;
const auto sequence = p0 + p1 + p2 + p3;
corsika::cascade::Cascade EAS(tracking, sequence, stack);
stack.Clear();
auto particle = stack.NewParticle();
EnergyType E0 = 100_GeV;
Felix Riehn
committed
MomentumType P0 = sqrt( E0*E0 - 0.93827_GeV * 0.93827_GeV ) / si::constants::c;
auto plab = super_stupid::MomentumVector(rootCS,
0. * 1_GeV / si::constants::c,
0. * 1_GeV / si::constants::c,
P0);
Felix Riehn
committed
particle.SetMomentum(plab);
particle.SetPID( Code::Proton );
cout << "Result: E0=" << E0 / 1_GeV << "GeV, particles below energy threshold =" << p1.GetCount() << endl;
cout << "total energy below threshold (GeV): " << p1.GetEnergy() / 1_GeV << std::endl;
p3.ShowResults();
cout << "total energy (GeV): "
<< ( p3.GetCutEnergy() + p3.GetInvEnergy() + p3.GetEmEnergy() ) / 1_GeV
<< endl;