Newer
Older
/**
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/cascade/Cascade.h>
#include <corsika/process/ProcessSequence.h>
#include <corsika/process/stack_inspector/StackInspector.h>
#include <corsika/process/tracking_line/TrackingLine.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/random/RNGManager.h>
#include <corsika/process/sibyll/ParticleConversion.h>
#include <corsika/units/PhysicalUnits.h>
Felix Riehn
committed
using namespace corsika;
using namespace corsika::process;
using namespace corsika::units;
using namespace corsika::particles;
using namespace corsika::random;
#include <iostream>
using namespace std;
static int fCount = 0;
class ProcessSplit : public corsika::process::BaseProcess<ProcessSplit> {
public:
ProcessSplit() {}
template <typename Particle>
double MinStepLength(Particle& p, setup::Trajectory&) const {
Felix Riehn
committed
Felix Riehn
committed
const Code corsikaBeamId = p.GetPID();
// beam particles for sibyll : 1, 2, 3 for p, pi, k
Felix Riehn
committed
// read from cross section code table
Felix Riehn
committed
int kBeam = process::sibyll::GetSibyllXSCode( corsikaBeamId );
Felix Riehn
committed
bool kInteraction = process::sibyll::CanInteract( corsikaBeamId );
/*
the target should be defined by the Environment,
and the boosts can be defined..
*/
// FOR NOW: assume target is oxygen
Felix Riehn
committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
int kTarget = 16;
double beamEnergy = p.GetEnergy() / 1_GeV;
#warning boost to cm. still missing, sibyll cross section input is cm. energy!
std::cout << "ProcessSplit: " << "MinStep: input en: " << beamEnergy
<< " beam can interact:" << kBeam
<< " beam XS code:" << kBeam
<< " beam pid:" << p.GetPID()
<< " target mass number:" << kTarget << std::endl;
double next_step;
if(kInteraction){
double prodCrossSection,dummy,dum1,dum2,dum3,dum4;
double dumdif[3];
if(kTarget==1)
sib_sigma_hp_(kBeam, beamEnergy, dum1, dum2, prodCrossSection, dumdif,dum3, dum4 );
else
sib_sigma_hnuc_(kBeam, kTarget, beamEnergy, prodCrossSection, dummy );
std::cout << "ProcessSplit: " << "MinStep: sibyll return: " << prodCrossSection << std::endl;
CrossSectionType sig = prodCrossSection * 1_mbarn;
std::cout << "ProcessSplit: " << "MinStep: CrossSection (mb): " << sig / 1_mbarn << std::endl;
const MassType nucleon_mass = 0.93827_GeV / corsika::units::si::constants::cSquared;
std::cout << "ProcessSplit: " << "nucleon mass " << nucleon_mass << std::endl;
// calculate interaction length in medium
double int_length = kTarget * ( nucleon_mass / 1_g ) / ( sig / 1_cmeter / 1_cmeter );
// pick random step lenth
std::cout << "ProcessSplit: " << "interaction length (g/cm2): " << int_length << std::endl;
// add exponential sampling
int a = 0;
next_step = -int_length * log(s_rndm_(a));
}else
#warning define infinite interaction length? then we can skip the test in DoDiscrete()
next_step = 1.e8;
/*
what are the units of the output? slant depth or 3space length?
std::cout << "ProcessSplit: "
<< "next step (g/cm2): " << next_step << std::endl;
Felix Riehn
committed
EProcessReturn DoContinuous(Particle&, setup::Trajectory&, Stack&) const {
// corsika::utls::ignore(p);
return EProcessReturn::eOk;
}
template <typename Particle, typename Stack>
void DoDiscrete(Particle& p, Stack& s) const {
Felix Riehn
committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
cout << "DoDiscrete: " << p.GetPID() << " interaction? " << process::sibyll::CanInteract( p.GetPID() ) << endl;
if( process::sibyll::CanInteract( p.GetPID() ) ){
cout << "defining coordinates" << endl;
// coordinate system, get global frame of reference
CoordinateSystem& rootCS = RootCoordinateSystem::GetInstance().GetRootCS();
QuantityVector<length_d> const coordinates{0_m, 0_m, 0_m};
Point pOrig(rootCS, coordinates);
/*
the target should be defined by the Environment,
ideally as full particle object so that the four momenta
and the boosts can be defined..
here we need: GetTargetMassNumber() or GetTargetPID()??
GetTargetMomentum() (zero in EAS)
*/
// FOR NOW: set target to proton
int kTarget = 1; //p.GetPID();
// proton mass in units of energy
const EnergyType proton_mass_en = 0.93827_GeV ; //0.93827_GeV / si::constants::cSquared ;
cout << "defining target momentum.." << endl;
// FOR NOW: target is always at rest
const EnergyType Etarget = 0. * 1_GeV + proton_mass_en;
const auto pTarget = super_stupid::MomentumVector(rootCS, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c);
cout << "target momentum (GeV/c): " << pTarget.GetComponents() / 1_GeV * si::constants::c << endl;
// const auto pBeam = super_stupid::MomentumVector(rootCS, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c);
// cout << "beam momentum: " << pBeam.GetComponents() << endl;
cout << "beam momentum (GeV/c): " << p.GetMomentum().GetComponents() / 1_GeV * si::constants::c << endl;
Felix Riehn
committed
stack is in GeV in lab. frame
convert to GeV in cm. frame
(assuming proton at rest as target AND
assuming no pT, i.e. shower frame-z is aligned with hadron-int-frame-z)
Felix Riehn
committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// cout << "defining total energy" << endl;
// total energy: E_beam + E_target
// in lab. frame: E_beam + m_target*c**2
EnergyType E = p.GetEnergy();
EnergyType Etot = E + Etarget;
// cout << "tot. energy: " << Etot / 1_GeV << endl;
// cout << "defining total momentum" << endl;
// total momentum
super_stupid::MomentumVector Ptot = p.GetMomentum(); // + pTarget;
// cout << "tot. momentum: " << Ptot.GetComponents() / 1_GeV * si::constants::c << endl;
// cout << "inv. mass.." << endl;
// invariant mass, i.e. cm. energy
EnergyType Ecm = sqrt( Etot * Etot - Ptot.squaredNorm() * si::constants::cSquared ); //sqrt( 2. * E * 0.93827_GeV );
// cout << "inv. mass: " << Ecm / 1_GeV << endl;
// cout << "boost parameters.." << endl;
/*
get transformation between Stack-frame and SibStack-frame
for EAS Stack-frame is lab. frame, could be different for CRMC-mode
the transformation should be derived from the input momenta
*/
// const double gamma = ( E + proton_mass * si::constants::cSquared ) / Ecm ;
// const double gambet = sqrt( E * E - proton_mass * proton_mass ) / Ecm;
const double gamma = Etot / Ecm ;
const auto gambet = Ptot / (Ecm / si::constants::c );
std::cout << "ProcessSplit: " << " DoDiscrete: gamma:" << gamma << endl;
std::cout << "ProcessSplit: " << " DoDiscrete: gambet:" << gambet.GetComponents() << endl;
int kBeam = process::sibyll::ConvertToSibyllRaw( p.GetPID() );
std::cout << "ProcessSplit: " << " DoDiscrete: E(GeV):" << E / 1_GeV << " Ecm(GeV): " << Ecm / 1_GeV << std::endl;
if (E < 8.5_GeV || Ecm < 10_GeV ) {
std::cout << "ProcessSplit: " << " DoDiscrete: dropping particle.." << std::endl;
p.Delete();
fCount++;
} else {
// Sibyll does not know about units..
double sqs = Ecm / 1_GeV;
// running sibyll, filling stack
sibyll_( kBeam, kTarget, sqs);
// running decays
//decsib_();
// print final state
int print_unit = 6;
sib_list_( print_unit );
// delete current particle
p.Delete();
Felix Riehn
committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// add particles from sibyll to stack
// link to sibyll stack
SibStack ss;
// SibStack does not know about momentum yet so we need counter to access momentum array in Sibyll
int i = -1;
super_stupid::MomentumVector Ptot_final(rootCS, {0.0_newton_second, 0.0_newton_second, 0.0_newton_second});
for (auto &psib: ss){
++i;
//transform energy to lab. frame, primitve
// compute beta_vec * p_vec
// arbitrary Lorentz transformation based on sibyll routines
const auto gammaBetaComponents = gambet.GetComponents();
const auto pSibyllComponents = psib.GetMomentum().GetComponents();
EnergyType en_lab = 0. * 1_GeV;
MomentumType p_lab_components[3];
en_lab = psib.GetEnergy() * gamma;
EnergyType pnorm = 0. * 1_GeV;
for(int j=0; j<3; ++j)
pnorm += ( pSibyllComponents[j] * gammaBetaComponents[j] * si::constants::c ) / ( gamma + 1.);
pnorm += psib.GetEnergy();
for(int j=0; j<3; ++j){
p_lab_components[j] = pSibyllComponents[j] - (-1) * pnorm * gammaBetaComponents[j] / si::constants::c;
// cout << "p:" << j << " pSib (GeV/c): " << pSibyllComponents[j] / 1_GeV * si::constants::c
// << " gb: " << gammaBetaComponents[j] << endl;
en_lab -= (-1) * pSibyllComponents[j] * gammaBetaComponents[j] * si::constants::c;
}
// const EnergyType en_lab = psib.GetEnergy()*gamma + gambet * psib.GetMomentum() * si::constants::c );
// cout << " en cm (GeV): " << psib.GetEnergy() / 1_GeV << endl
// << " en lab (GeV): " << en_lab / 1_GeV << endl;
// cout << " pz cm (GeV/c): " << psib.GetMomentum().GetComponents()[2] / 1_GeV * si::constants::c << endl
// << " pz lab (GeV/c): " << p_lab_components[2] / 1_GeV * si::constants::c << endl;
// add to corsika stack
auto pnew = s.NewParticle();
pnew.SetEnergy( en_lab );
pnew.SetPID( process::sibyll::ConvertFromSibyll( psib.GetPID() ) );
//cout << "momentum sib (cm): " << psib.GetMomentum().GetComponents() / 1_GeV * si::constants::c << endl;
corsika::geometry::QuantityVector<momentum_d> p_lab_c{ p_lab_components[0],
p_lab_components[1],
p_lab_components[2]};
pnew.SetMomentum( super_stupid::MomentumVector( rootCS, p_lab_c) );
//cout << "momentum sib (lab): " << pnew.GetMomentum().GetComponents() / 1_GeV * si::constants::c << endl;
//cout << "s_cm (GeV2): " << (psib.GetEnergy() * psib.GetEnergy() - psib.GetMomentum().squaredNorm() * si::constants::cSquared ) / 1_GeV / 1_GeV << endl;
//cout << "s_lab (GeV2): " << (pnew.GetEnergy() * pnew.GetEnergy() - pnew.GetMomentum().squaredNorm() * si::constants::cSquared ) / 1_GeV / 1_GeV << endl;
Ptot_final += pnew.GetMomentum();
Felix Riehn
committed
//cout << "tot. momentum final (GeV/c): " << Ptot_final.GetComponents() / 1_GeV * si::constants::c << endl;
}
}else
Felix Riehn
committed
p.Delete();
// define reference frame? --> defines boosts between corsika stack and model stack.
// initialize random numbers for sibyll
// FOR NOW USE SIBYLL INTERNAL !!!
corsika::random::RNGManager& rmng = corsika::random::RNGManager::GetInstance();
;
const std::string str_name = "s_rndm";
rmng.RegisterRandomStream(str_name);
// // corsika::random::RNG srng;
// auto srng = rmng.GetRandomStream("s_rndm");
// test random number generator
std::cout << "ProcessSplit: "
<< " test sequence of random numbers." << std::endl;
for (int i = 0; i < 8; ++i) std::cout << i << " " << s_rndm_(a) << std::endl;
// initialize Sibyll
// set particles stable / unstable
Felix Riehn
committed
// use stack to loop over particles
setup::Stack ds;
ds.NewParticle().SetPID(Code::Proton);
ds.NewParticle().SetPID(Code::Neutron);
ds.NewParticle().SetPID(Code::PiPlus);
ds.NewParticle().SetPID(Code::PiMinus);
ds.NewParticle().SetPID(Code::KPlus);
ds.NewParticle().SetPID(Code::KMinus);
ds.NewParticle().SetPID(Code::K0Long);
ds.NewParticle().SetPID(Code::K0Short);
for (auto& p : ds) {
int s_id = process::sibyll::ConvertToSibyllRaw(p.GetPID());
Felix Riehn
committed
// set particle stable by setting table value negative
cout << "ProcessSplit: Init: setting " << p.GetPID() << "(" << s_id << ")"
<< " stable in Sibyll .." << endl;
s_csydec_.idb[s_id] = -s_csydec_.idb[s_id - 1];
Felix Riehn
committed
p.Delete();
}
int GetCount() { return fCount; }
private:
};
double s_rndm_(int&) {
static corsika::random::RNG& rmng =
corsika::random::RNGManager::GetInstance().GetRandomStream("s_rndm");
;
return rmng() / (double)rmng.max();
Felix Riehn
committed
CoordinateSystem& rootCS = RootCoordinateSystem::GetInstance().GetRootCS();
tracking_line::TrackingLine<setup::Stack> tracking;
stack_inspector::StackInspector<setup::Stack> p0(true);
ProcessSplit p1;
const auto sequence = p0 + p1;
setup::Stack stack;
corsika::cascade::Cascade EAS(tracking, sequence, stack);
stack.Clear();
auto particle = stack.NewParticle();
Felix Riehn
committed
EnergyType E0 = 500_GeV;
MomentumType P0 = sqrt( E0*E0 - 0.93827_GeV * 0.93827_GeV ) / si::constants::c;
auto plab = super_stupid::MomentumVector(rootCS,
0. * 1_GeV / si::constants::c,
0. * 1_GeV / si::constants::c,
P0);
Felix Riehn
committed
particle.SetMomentum(plab);
particle.SetPID( Code::Proton );
EAS.Init();
EAS.Run();
cout << "Result: E0=" << E0 / 1_GeV << "GeV, count=" << p1.GetCount() << endl;
}