IAP GITLAB

Skip to content
Snippets Groups Projects
iso.f 22.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
c $Id: iso.f,v 1.7 1999/01/18 09:57:06 ernst Exp $
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
      SUBROUTINE ISOCGK4(J1,M1,J2,M2,Jnew,Mnew,ITAG)
c
c     Revision : 1.0
c
c     This subroutine determines according to probabilities given by
c     Clebsch Gordan cefficients the total and 3-component of the
c     isospin of up to 4 outgoing particles
C
c     input:
c     (isocgk: two part. in and two part. out)
c              J1    : 2*I  of ingoing particle 1
c              M1    : 2*I3 of ingoing particle 1
c              J2    : 2*I  of ingoing particle 2
c              M2    : 2*I3 of ingoing particle 2
c              Jnew  : 2*I  of outgoing particles (array)
c
c
c     (isonew: one part. in and two part. out)
c              J     : 2*I  of ingoing particle
c              M     : 2*I3 of ingoing particle
c              Jnew  : 2*I  of outgoing particles (array)
c              ITAG=-50 << necessary for correct functioning of routine
c
c     input/output:
c              Mnew  : 2*I3 of outgoing particles (array)
c                       Mnew(i)=-9 to determine the I3 component of the
c                          i-th particle randomly
c              ITAG  : = -1 then no possible isospin combination has been found
c
c
c     function calls:
c                     ranf()
c                     clebsch
c
c important global variables:
c              nexit : number of outgoing particles
c
c important local variables:
C     JMINOL/JMINNW  THE MINIMAL POSSIBLE TOTAL ISOSPIN IN IN-/OUT-STATE
C     M       TOTAL I3 OF IN-/OUT-STATE
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
      implicit none
      include 'newpart.f'
      integer m1,j1,m2,j2,itag,Jnew,Mnew
      integer Jtot,M,Jminol,Jmaxol,Jminnw,Jmaxnw,i,j,k,l,il,jp,jpr
      integer jmin,jmax,Nj,ifind
      integer m1pr,m1p,m1pos,m1out
      integer m2pr,m2p,m2pos,m2out
      integer m3pr,m3p,m3pos,m3out
      integer m4pr,m4p,m4pos,m4out,Mmin,Mmax
      integer m12,m34,j12,j34
      integer Jin,Min
      real*8 pjin,prbout,prbsum,zrand,c12,c34,c_tot
      DIMENSION pjin(20),prbout(20,20,20,20)
      DIMENSION m1out(20),m2out(20),m3out(20),m4out(20)
      DIMENSION JNEW(mprt),Mnew(mprt),Mmin(mprt),Mmax(mprt)
      real*8 ranf,clebsch

      ITAG=0
      M=M1+M2


c 1.) first treat  some special cases
        if(nexit.gt.4)then
          write(6,*)'ISOCGK: only <=4 outgoing Isospins can be coupled'
          itag=-1
          stop
          return
        endif

        if(nexit.eq.3)Jnew(4)=0

      if(nexit.eq.2)then       !nexit.eq.2
        Jnew(3)=0
        Jnew(4)=0
c check for zero in out-channel:
       if(Jnew(1).eq.0) then
          Mnew(1)=0
          Mnew(2)=m
          return
       elseif(Jnew(2).eq.0) then
          Mnew(2)=0
          Mnew(1)=m
          return
       endif
      endif                   !nexit.eq.2

c 2.) determine possible min and max isospins for in/out state
c
c determine number of possible in-states
       Jminol=  MAX0(IABS(J1-J2),IABS(M))
       Jmaxol= J1+J2

c determine number of possible out-states
c JMINNW=  MAX0(IABS(J1NEW-J2NEW),IABS(M))
        Jminnw=1000
        do 1 i=-1,1,2
         do 2 j=-1,1,2
          do 3 k=-1,1,2
           do 4 l=-1,1,2
            jp=IABS(i*Jnew(1)+j*Jnew(2)+k*Jnew(3)+l*Jnew(4))
            if(jp.lt.Jminnw)Jminnw=jp
4           continue
3          continue
2         continue
1        continue
        Jminnw=MAX0(Jminnw,IABS(M))

c JMAXNW= J1NEW+J2NEW
        Jmaxnw=0
         do 5 i=1,nexit
          Jmaxnw=Jmaxnw+Jnew(i)
5       continue

c  check which possible states match (are common for in AND out state)
       Jmin  =  MAX0(Jminol,Jminnw)
       Jmax  =  MIN0(Jmaxol,Jmaxnw)
c error check for unphysical input
       if(Jmin.gt.Jmax) then
          itag=-1
          write(6,*)'isocgk: jmin > jmax : unphysical input!'
          write(6,*) J1,M1,J2,M2,jnew(1),jnew(2),jmin,jmax
          return
       endif

c 3.) calculate number of possible isospins
       nj = (Jmax-Jmin)/2 +1
       if(J1.eq.0.or.J2.eq.0)then
          if(Jmin.ne.Jmax) then
             itag=-1
             write(6,*) 'J1(2)=0,Jmin.ne.Jmax IN ISOCGK - check calling'
             return
          endif
          if(J1.eq.0.and.J2.eq.0) then
             write(6,*) "J1,J2=0 IN ISOCGK - can't couple this"
             itag=-1
               return
          endif
c here only one total isospin is possible (probability is unity)
          pjin(1)=1.
          goto 310
       END IF      !J1.EQ.0.OR.J2.EQ.0
c if no overlap between in and out state, return with itag=-1
       if(nj.le.0) then
          itag=-1
          write(6,*)'Isocgk: nj.le.0 - no combination possible'
          return
       endif

       ifind=0
c 4) loops over all possible combinations of J1,J2,M1,M2,Jtot
c    to get the probabilities of the in-channel couplings
             DO 6 jpr=Jmin,Jmax,2
                      ifind=ifind+1
                      pjin(ifind)=clebsch(J1,J2,m1,m2,jpr)
6          CONTINUE

C
c error message, if not all possible Jtot's have been found
c       if(ifind.ne.nj) then
c          write(6,*)'ERROR IN ISOCGK IFIND.NE.NJ'
c          stop
c       endif
c sum CGKs over all possible Jtots (-> probabilities)
       prbsum=0.
       do 7 il=1,nj
          prbsum=prbsum+pjin(il)
7      continue

c check for nonsense
       IF(prbsum.le.0.) THEN
          write(6,*)'ERROR IN ISOCGK 30:PRBSUM.LE.0.'
          stop
       END IF
c normalize PJIN(.) to 1
c now PJIN contains CGK-based probabilities for the different possible Jtots
       Do 8 il=1,nj
          pjin(il)=pjin(il)/prbsum
8      Continue
310   continue
c 5) now throw dice to determine one of the possible Jtots
       zrand=ranf(0)
       Do 9 il=1,nj
          if(zrand.lt.pjin(il))then
c this is now the "real Jtot"
             Jtot= Jmin +2*(il-1)
               goto 11
          else
             zrand=zrand-pjin(il)
          endif
9      Continue
11         Continue


       goto 111

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c this is the entry for one in and >= two out particles
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
       ENTRY ISONEW4(JIN,MIN,JNEW,MNEW,ITAG)

       IF(ITAG.EQ.-50) THEN

          Jtot=Jin
          M=Min
          itag=0

       END IF                   !itag=-50

c here now both cases (one/two-in particles) together
c now the in-channel is determined -> get out-channel
 111   continue

c special cases
       if(nexit.gt.4)then
          write(6,*)'ISONEW: only <=4 outgoing Isospins can be coupled'
          itag=-1
          stop
          return
       endif

       if(nexit.eq.3)then
          Jnew(4)=0
          Mnew(4)=0
       endif

       if(nexit.eq.2)then
          Jnew(3)=0
          Jnew(4)=0
          Mnew(3)=0
          Mnew(4)=0
c check for zero in out-channel:
          if(Jnew(1).eq.0) then
             mnew(1)=0
             mnew(2)=m
             return
          elseif(Jnew(2).eq.0) then
             mnew(2)=0
             mnew(1)=m
             return
          endif
       endif                    !nexit=2


c reset counters
        m1pos=2*Jnew(1)+1
        m2pos=2*Jnew(2)+1
        m3pos=2*Jnew(3)+1
        m4pos=2*Jnew(4)+1
       Do 161 m1p=1,20
          m1out(m1p)=0
          m2out(m1p)=0
          m3out(m1p)=0
          m4out(m1p)=0
          Do 162 m2p=1,m2pos
           Do 163 m3p=1,m3pos
            Do 164 m4p=1,m4pos
           prbout(m1p,m2p,m3p,m4p)=0d0
164            Continue
163      Continue
162     Continue
161    Continue

c get min/maximal M
        Do 100 i=1,4
            Mmin(i)=-Jnew(i)
            Mmax(i)=Jnew(i)
100        Continue

c calculate the possible |J_i M_i> combinations and their probability
        do 112 j12=Iabs(Jnew(1)-Jnew(2)),(Jnew(1)+Jnew(2)),2
        do 134 j34=Iabs(Jnew(3)-Jnew(4)),(Jnew(3)+Jnew(4)),2
        m1pos=0
        Do 41 m1pr=Mmin(1),Mmax(1),2
         m1pos=m1pos+1
         m1out(m1pos)=m1pr
           m2pos=0
         Do 42 m2pr=Mmin(2),Mmax(2),2
          m2pos=m2pos+1
          m2out(m2pos)=m2pr
            m3pos=0
          Do 43 m3pr=Mmin(3),Mmax(3),2
           m3pos=m3pos+1
           m3out(m3pos)=m3pr
             m4pos=0
             Do 44 m4pr=Mmin(4),Mmax(4),2
              m4pos=m4pos+1
              m4out(m4pos)=m4pr
c            m4pr=m-m1pr-m2pr-m3pr
              If(m1pr+m2pr+m3pr+m4pr.ne.m)goto 44
              m12=m1pr+m2pr
              m34=m3pr+m4pr

                c12=clebsch(Jnew(1),Jnew(2),m1pr,m2pr,J12)
                c34=clebsch(Jnew(3),Jnew(4),m3pr,m4pr,J34)
                c_tot= clebsch(J12,J34,m12,m34,Jtot)

                    prbout(m1pos,m2pos,m3pos,m4pos)=
     +         prbout(m1pos,m2pos,m3pos,m4pos)+c12*c34*c_tot


 44          Continue
 43       Continue
 42    Continue
 41   Continue
 134  continue
 112  continue

c error check
       if(m1pos.eq.0.or.m2pos.eq.0.or.m3pos.eq.0.or.m4pos.eq.0)then
          write(6,*)'IN ISOCGK/ISONEW: MPOS=0 ERROR'
            write(6,*)"Can't couple Jin, Min=",Jtot,M
            write(6,*)'To J1,J2,J3,J4=',Jnew(1),Jnew(2),Jnew(3),Jnew(4)
          itag=-1
          return
       endif

c sum up all CGKs
       prbsum=0.
       Do 51 m1p=1,m1pos
          Do 52 m2p=1,m2pos
           Do 53 m3p=1,m3pos
            Do 54 m4p=1,m4pos
           prbsum=prbsum+prbout(m1p,m2p,m3p,m4p)
54            Continue
53       continue
52      continue
51     continue

c error check
       IF(prbsum.le.0.) then
          write(6,*)'ERROR IN ISOCGK/ISONEW:PRBSUM.LE.0.'
            write(6,*)"Can't couple Jin, Min=",Jtot,M
            write(6,*)'To J1,J2,J3,J4=',Jnew(1),Jnew(2),Jnew(3),Jnew(4)
          stop
       endif

c normalize to 1 (now we have real probabilities for different Mout combis)
       Do 61 m1p=1,m1pos
          Do 62 m2p=1,m2pos
           Do 63 m3p=1,m3pos
            Do 64 m4p=1,m4pos
           prbout(m1p,m2p,m3p,m4p)=prbout(m1p,m2p,m3p,m4p)/prbsum
c      write(*,*)'!p= ',m1out(m1p),m2out(m2p),m3out(m3p),
c     & m4out(m4p),prbout(m1p,m2p,m3p,m4p)
64            Continue
63       Continue
62      Continue
61     Continue

c now determine according to the PRBOUT values the outgoing M combination
       zrand=ranf(0)
       Do 71 m1p=1,m1pos
          Do 72 m2p=1,m2pos
           Do 73 m3p=1,m3pos
            Do 74 m4p=1,m4pos
           if(zrand.lt.prbout(m1p,m2p,m3p,m4p)) then
             Mnew(1)= M1out(m1p)
             Mnew(2)= M2out(m2p)
             Mnew(3)= M3out(m3p)
               Mnew(4)= M4out(m4p)
               goto 70
           else
             zrand=zrand-prbout(m1p,m2p,m3p,m4p)
           endif
74            Continue
73       Continue
72      Continue
71     Continue
70         Continue
       RETURN
       END


C####C##1#########2#########3#########4#########5#########6#########7##
      real*8 function fcgk(i1,i2,iz1,iz2,i) !L.A.W. Tue Aug 15 1995
c returns the normalized clebsch gorden factor also for combinations
c involving strange mesons and antibaryons
C####C##1#########2#########3#########4#########5#########6#########7##
      implicit none
      include 'comres.f'
      real*8 c
      integer i1,i2,iz1,iz2,i,iz,isoit,i12,i12a,ir,strit,icnt
      logical nombbb

      fcgk=0D0
      icnt=0
      c=0d0
      iz=iz1+iz2
      if(isoit(i).lt.iabs(iz))goto 1008
      if(isoit(i1)*isoit(i2).eq.0)then
         c=1d0
         goto 1008
      end if

      call cgknrm(isoit(i),iz,isoit(i1),isoit(i2),iz1,iz2,ir,c)
      if(i1.eq.i2.and.iz1.ne.iz2.and.iz1+iz2.eq.0)c=2d0*c
c... particle exchange

      if(ir.ne.0)then
         icnt=icnt+1
         if(icnt.le.1)then
           write(6,*)'fcgk: no iso-spin decomposition found for:',
     @       i,iz,' to ',i1,iz1,'+',i2,iz2
           write(6,*)'      please check this channel'
        end if
        return
      end if

      if(strit(i).eq.0)then
c... this is now for particle+antiparticle (except nonstrange mesons)
         i12=i1*i2
         i12a=iabs(i12)
         nombbb=i12a.lt.maxbar**2.or.i12a.gt.minmes**2
c... the charge conjugated states have the same weight
         if(i12.lt.0.and.nombbb)then
c... for example anti-K* + K
            if(i1.ne.-i2)c=c*5d-1
         end if
      end if
1008   fcgk=c
      return
      end
C####C##1#########2#########3#########4#########5#########6#########7##
       subroutine cgknrm(JIN,MIN,J1NEW,J2NEW,M1IN,M2IN,ierr,cf)
C gives the normalized cg-factor i.e. poosibility into a given
C iso-spin decomposition of JIN,MIN into J1NEW,J2NEW,M1IN,M2IN
C ierr equals 0 if there is any alowed J1,J2,M1,M2 (not necessaryly
C equal to J1NEW,J2NEW,M1IN,M2).
C ierr is not equal 0 if all channels are iso-spin forbidden
C for specific couplings possibly involving strange particles or
C anti-particles function fcgk should be used (see beyond)
Coutput cf :  normalized cg-factor
C####C##1#########2#########3#########4#########5#########6#########7##
       implicit integer (i - n)
       implicit real*8 (a - h , o - z)
       DIMENSION PRBOUT(20),M1OUT(20)
       real*8 clebsch

c the in particle of course defines Jtot and Mtot
       cf =0d0
       ierr = 0
ctp060202 1     JTOT=JIN
       JTOT=JIN
       M=MIN
       ITAG=0
c check for zero in out-channel:
          if(j1new.eq.0) then
             m1new=0
             m2new=m
             return
          elseif(j2new.eq.0) then
             m2new=0
             m1new=m
             return
          endif

c here now both cases (one/two in particles) together
c reset counters
       M1POS=0
c loop over all J1,J2,Jtot,M1,M2 combinations
       do 39 m1pr=-j1new,j1new,2
          m2pr=m-m1pr
c if J1new and J2new and Jtot and Mtot create a match then store M1new
c inM1OUT array and the CGK in PRBOUT array; the counter for possible
c Mnew combinations is M1POS
          M1POS=M1POS+1
          M1OUT(M1POS)=M1PR
          PRBOUT(M1POS)=clebsch(j1new,j2new,m1pr,m2pr,jtot)
          if( ! (m1pr.eq.m2in.and.m2pr.eq.m1in).or.
     @       (m2pr.eq.m2in.and.m1pr.eq.m1in))cf=cf+PRBOUT(M1POS)
 39    continue
c error check
       IF(M1POS.EQ.0) then
          write(6,*)'IN ISOCGK: M1POS=0 ERROR'
          write(6,*)'jtot,j1new,j2new,m',jtot,j1new,j2new,m
          itag=-1
          return
       endif
c sum over all CGKs
       PRBSUM=0.
       DO 50 M1P=1,M1POS
          PRBSUM=PRBSUM+PRBOUT(M1P)
 50    continue

c error check
       IF(PRBSUM.LT.1d-3) then
          ierr = 1
          cf = 0d0
          return
       endif
c normalize to 1 (now we have real probabilities for different Mout combis)
       cf=cf/PRBSUM

       RETURN
       END


ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
      real*8 function dbweight(j1,m1,j2,m2,j1new,j2new)
c
c     Revision : 1.0
c
c     This function delivers a weight, based on a Clebsch Gordan
c     coefficient, for detailed balance cross sections
C
c     input:
c              J1    : 2*I  of ingoing particle 1
c              J2    : 2*I  of ingoing particle 2
c              M1    : 2*I3 of ingoing particle 1
c              M2    : 2*I3 of ingoing particle 2
c              J1new : 2*I  of outgoing particle 1
c              J2new : 2*I  of outgoing particle 2
c
c     output:
c              weight : weight factor
c
c     function calls:
c                     clebsch
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

      implicit none
      integer j1,m1,j2,m2,j1new,j2new,jminol,jmaxol,jminnw,jmaxnw
      integer nj,jpr,m,jmax,jmin,ind
      real*8 clebsch,weight(10)

      dbweight=0.d0
      m=m1+m2
c determine number of possible states
c fist the in state
      JMINOL=  MAX0(IABS(J1-J2),IABS(M))
      JMAXOL= J1+J2
c now the out state
      JMINNW=  MAX0(IABS(J1NEW-J2NEW),IABS(M))
      JMAXNW= J1NEW+J2NEW
c  which possible states match (are common for in AND out state)
      JMIN  =  MAX0(JMINOL,JMINNW)
      JMAX  =  MIN0(JMAXOL,JMAXNW)
      NJ = (JMAX-JMIN)/2 +1
      if(nj.lt.1) return
      ind=0
      do 18 jpr=jmin,jmax,2
         ind=ind+1
         weight(ind)=clebsch(j1,j2,m1,m2,jpr)
         dbweight=dbweight+weight(ind)
 18   continue

      return
      end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
      real*8 function clebsch(j1,j2,m1,m2,j3)
c
c     Revision : 1.0
c
c     This function delivers a Clebsch Gordan Coefficient, which has been
c     calculated by w3j.
C
c     input:
c              J1    : 2*I  of ingoing particle 1
c              J2    : 2*I  of ingoing particle 2
c              M1    : 2*I3 of ingoing particle 1
c              M2    : 2*I3 of ingoing particle 2
c              J3    : 2*I  of projection requested
c                           (i.e. resonance to be formed)
c
c     output:
c              clebsch : CGK**2
c
c     function calls:
c                     w3j
c                     !!! first call function after intialization with loginit
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

      implicit none
      real*8 LogFak( 0 : 100 ),dj1,dj2,dj3,dm1,dm2,dm3,w3j
      real*8 cfct,cgk
      integer j1,j2,j3,m1,m2,ipot,jmm,jmm1
      common /FACTORIALS/LogFak

      integer jmax
      parameter(jmax=7)
      real*8 cgktab(0:jmax,0:jmax,-jmax:jmax,-jmax:jmax,0:jmax)
      common /cgks/cgktab

c     each cgk for j's in the range up to jmax is calculated only once
c     and then stored in the cgktab table for further use
      jmm1=max(j1,j2)
      jmm=max(j3,jmm1)
      if(jmm.gt.jmax.or.(cgktab(j1,j2,m1,m2,j3).lt.-8.d0)) then

         dj1=dble(j1)/2.d0
         dj2=dble(j2)/2.d0
         dj3=dble(j3)/2.d0
         dm1=dble(m1)/2.d0
         dm2=dble(m2)/2.d0
         dm3=-(dm1+dm2)
         ipot=(j1+m1+j2-m2)/2
         cfct=sqrt(2*dj3+1.d0)/(-(1.d0**ipot))
         cgk=cfct*w3j(dj1,dj2,dj3,dm1,dm2,dm3)
         clebsch=cgk**2
         if(jmm.le.jmax) then
            cgktab(j1,j2,m1,m2,j3)=clebsch
         endif
      else
         clebsch=cgktab(j1,j2,m1,m2,j3)
      endif
      return
      END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
      function W3j( J1, J2, J3, M1, M2, M3 )
c
c
c  This program calculates the 3-j wigner symbols according to the
c  representation of A. Lindner.
c
c  Reference:
c  A. Lindner, Drehimpulse in der Quantenmechanik, Teubner 1984, P.39
c
c======================================================================
      implicit none
c  Program input

      real*8       J1, J2, J3, M1, M2, M3

c  Program returns

      real*8       W3j

c  Global variables

      real*8       LogFak( 0 : 100 )
      common /FACTORIALS/   LogFak

c  Program variables

      real*8       R1, R2, R3,  R4, R5, R6, R7, R8, R9
      real*8       N( 1 : 3, 1 : 3 )
      real*8       Sum1, Sum2
      real*8       Sigma
      real*8       LF_R1, LF_R2, LF_R3, LF_R4, LF_R5, LF_R6
      real*8       LF_R7, LF_R8, LF_R9
      real*8       LF_Sigma
      real*8       Hlp1, Hlp2, Pre
      real*8       Summe, S( 0 : 100 )
      integer*4    Signum
      integer*4    in
      real*8       minimal
      integer*4    imin, jmin
      integer*4    i, j
      real*8       dn
      real*8       dummy

c  Start of calculation

c  Evaluation due to equivalence with Regge symbol

c     call LogInit
C
      Sigma = J1 + J2 + J3

      N( 1, 1 ) = -J1 + J2 + J3
      N( 1, 2 ) =  J1 - J2 + J3
      N( 1, 3 ) =  J1 + J2 - J3
      N( 2, 1 ) =  J1 - M1
      N( 2, 2 ) =  J2 - M2
      N( 2, 3 ) =  J3 - M3
      N( 3, 1 ) =  J1 + M1
      N( 3, 2 ) =  J2 + M2
      N( 3, 3 ) =  J3 + M3

      do 20 i = 1, 3
         do 10 j = 1, 3
            if ( nint( N( i, j ) ) .lt. 0 ) goto 99999
 10      continue
         Sum1 = N( i, 1 ) + N( i, 2 ) + N( i, 3 )
         Sum2 = N( 1, i ) + N( 2, i ) + N( 3, i )
         if ( nint( Sum1 ) .ne. nint( Sigma ) )   goto 99999
         if ( nint( Sum2 ) .ne. nint( Sigma ) )   goto 99999
 20   continue

c      do 101 i=1, 3
c         write(6,'(3f14.5)') (N(i,j), j=1, 3 )
c 101  continue

      imin = 1
      jmin = 1
      Signum = 1
      minimal = N( 1, 1 )

c  Looking for the smallest N( i, j )

      do 40 i = 1, 3
         do 30 j = 1, 3
            if ( N(i,j) .lt. minimal )   then
               minimal = N( i, j )
               imin = i
               jmin = j
            endif
 30      continue
 40   continue

      Signum = 1

      if ( imin .gt. 1 )   then
         do 50 j = 1, 3
            dummy = N( 1, j )
            N( 1, j ) = N( imin, j )
            N( imin, j ) = dummy
 50      continue
         Signum = (-1)**nint( Sigma )
      endif

      if ( jmin .gt. 1 )   then
         do 60 i = 1, 3
            dummy = N( i, 1 )
            N( i, 1 ) = N( i, jmin )
            N( i, jmin ) = dummy
 60      continue
         Signum = (-1)**nint( Sigma ) * Signum
      endif


      R1 = N( 1, 1 )
      R2 = N( 1, 2 )
      R3 = N( 1, 3 )
      R4 = N( 2, 1 )
      R5 = N( 2, 2 )
      R6 = N( 2, 3 )
      R7 = N( 3, 1 )
      R8 = N( 3, 2 )
      R9 = N( 3, 3 )

      LF_R1 = LogFak( nint( R1 ) )
      LF_R2 = LogFak( nint( R2 ) )
      LF_R3 = LogFak( nint( R3 ) )
      LF_R4 = LogFak( nint( R4 ) )
      LF_R5 = LogFak( nint( R5 ) )
      LF_R6 = LogFak( nint( R6 ) )
      LF_R7 = LogFak( nint( R7 ) )
      LF_R8 = LogFak( nint( R8 ) )
      LF_R9 = LogFak( nint( R9 ) )
      LF_Sigma = LogFak( nint( Sigma+1.d0 ) )

      Hlp1 = ( LF_R2 + LF_R3 + LF_R4 + LF_R7 - LF_Sigma -
     &         LF_R1 - LF_R5 - LF_R9 - LF_R6 - LF_R8 ) / 2.d0

      Pre = dexp( Hlp1 ) * (-1)**( nint( R6 + R8 ) )

      Hlp2 = LF_R6 - LogFak( nint(R6-R1) )
     &       + LF_R8 - LogFak( nint(R8-R1) )
      S( 0 ) = dexp( Hlp2 )
      Summe = S( 0 )

      do 70 in = 1, nint( R1 )
         dn = dble( in )
         S( in ) = (-1)*S( in-1 ) * ( R1+1.d0-dn ) * ( R5+1.d0-dn )
     &        * ( R9+1.d0-dn ) / dn / ( R6-R1+dn ) / ( R8-R1+dn )
         Summe = Summe + S( in )
 70   continue

      W3j = Pre * Summe * Signum
      return

99999 W3j = 0.d0
      return

      end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
      subroutine LogInit
c=====================================================================
c
c  This function computes the logarithm of the factorials and
c  stores it in the array LogFak.
c
c=====================================================================

      implicit none

c  Program output
      integer jmax
      parameter(jmax=7) ! must be identical to value in clebsch!!!
      real*8 cgktab(0:jmax,0:jmax,-jmax:jmax,-jmax:jmax,0:jmax)
      common /cgks/cgktab

      real*8      LogFak( 0 : 100 )

      common / FACTORIALS /   LogFak

c  Program variables

      integer*4   i,j1,j2,j3,m1,m2

c  Program start
      do 1 j1=0,jmax
         do 1 j2=0,jmax
            do 1 m1=-jmax,jmax
               do 1 m2=-jmax,jmax
                  do 1 j3=0,jmax
                     cgktab(j1,j2,m1,m2,j3)=-9.d0
 1                continue


      LogFak( 0 ) = 0.d0
      do 10 i = 1, 100
         LogFak( i ) = LogFak( i-1 ) + dlog( dble( i ) )
 10   continue

      end