Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
c $Id: iso.f,v 1.7 1999/01/18 09:57:06 ernst Exp $
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE ISOCGK4(J1,M1,J2,M2,Jnew,Mnew,ITAG)
c
c Revision : 1.0
c
c This subroutine determines according to probabilities given by
c Clebsch Gordan cefficients the total and 3-component of the
c isospin of up to 4 outgoing particles
C
c input:
c (isocgk: two part. in and two part. out)
c J1 : 2*I of ingoing particle 1
c M1 : 2*I3 of ingoing particle 1
c J2 : 2*I of ingoing particle 2
c M2 : 2*I3 of ingoing particle 2
c Jnew : 2*I of outgoing particles (array)
c
c
c (isonew: one part. in and two part. out)
c J : 2*I of ingoing particle
c M : 2*I3 of ingoing particle
c Jnew : 2*I of outgoing particles (array)
c ITAG=-50 << necessary for correct functioning of routine
c
c input/output:
c Mnew : 2*I3 of outgoing particles (array)
c Mnew(i)=-9 to determine the I3 component of the
c i-th particle randomly
c ITAG : = -1 then no possible isospin combination has been found
c
c
c function calls:
c ranf()
c clebsch
c
c important global variables:
c nexit : number of outgoing particles
c
c important local variables:
C JMINOL/JMINNW THE MINIMAL POSSIBLE TOTAL ISOSPIN IN IN-/OUT-STATE
C M TOTAL I3 OF IN-/OUT-STATE
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
implicit none
include 'newpart.f'
integer m1,j1,m2,j2,itag,Jnew,Mnew
integer Jtot,M,Jminol,Jmaxol,Jminnw,Jmaxnw,i,j,k,l,il,jp,jpr
integer jmin,jmax,Nj,ifind
integer m1pr,m1p,m1pos,m1out
integer m2pr,m2p,m2pos,m2out
integer m3pr,m3p,m3pos,m3out
integer m4pr,m4p,m4pos,m4out,Mmin,Mmax
integer m12,m34,j12,j34
integer Jin,Min
real*8 pjin,prbout,prbsum,zrand,c12,c34,c_tot
DIMENSION pjin(20),prbout(20,20,20,20)
DIMENSION m1out(20),m2out(20),m3out(20),m4out(20)
DIMENSION JNEW(mprt),Mnew(mprt),Mmin(mprt),Mmax(mprt)
real*8 ranf,clebsch
ITAG=0
M=M1+M2
c 1.) first treat some special cases
if(nexit.gt.4)then
write(6,*)'ISOCGK: only <=4 outgoing Isospins can be coupled'
itag=-1
stop
return
endif
if(nexit.eq.3)Jnew(4)=0
if(nexit.eq.2)then !nexit.eq.2
Jnew(3)=0
Jnew(4)=0
c check for zero in out-channel:
if(Jnew(1).eq.0) then
Mnew(1)=0
Mnew(2)=m
return
elseif(Jnew(2).eq.0) then
Mnew(2)=0
Mnew(1)=m
return
endif
endif !nexit.eq.2
c 2.) determine possible min and max isospins for in/out state
c
c determine number of possible in-states
Jminol= MAX0(IABS(J1-J2),IABS(M))
Jmaxol= J1+J2
c determine number of possible out-states
c JMINNW= MAX0(IABS(J1NEW-J2NEW),IABS(M))
Jminnw=1000
do 1 i=-1,1,2
do 2 j=-1,1,2
do 3 k=-1,1,2
do 4 l=-1,1,2
jp=IABS(i*Jnew(1)+j*Jnew(2)+k*Jnew(3)+l*Jnew(4))
if(jp.lt.Jminnw)Jminnw=jp
4 continue
3 continue
2 continue
1 continue
Jminnw=MAX0(Jminnw,IABS(M))
c JMAXNW= J1NEW+J2NEW
Jmaxnw=0
do 5 i=1,nexit
Jmaxnw=Jmaxnw+Jnew(i)
5 continue
c check which possible states match (are common for in AND out state)
Jmin = MAX0(Jminol,Jminnw)
Jmax = MIN0(Jmaxol,Jmaxnw)
c error check for unphysical input
if(Jmin.gt.Jmax) then
itag=-1
write(6,*)'isocgk: jmin > jmax : unphysical input!'
write(6,*) J1,M1,J2,M2,jnew(1),jnew(2),jmin,jmax
return
endif
c 3.) calculate number of possible isospins
nj = (Jmax-Jmin)/2 +1
if(J1.eq.0.or.J2.eq.0)then
if(Jmin.ne.Jmax) then
itag=-1
write(6,*) 'J1(2)=0,Jmin.ne.Jmax IN ISOCGK - check calling'
return
endif
if(J1.eq.0.and.J2.eq.0) then
write(6,*) "J1,J2=0 IN ISOCGK - can't couple this"
itag=-1
return
endif
c here only one total isospin is possible (probability is unity)
pjin(1)=1.
goto 310
END IF !J1.EQ.0.OR.J2.EQ.0
c if no overlap between in and out state, return with itag=-1
if(nj.le.0) then
itag=-1
write(6,*)'Isocgk: nj.le.0 - no combination possible'
return
endif
ifind=0
c 4) loops over all possible combinations of J1,J2,M1,M2,Jtot
c to get the probabilities of the in-channel couplings
DO 6 jpr=Jmin,Jmax,2
ifind=ifind+1
pjin(ifind)=clebsch(J1,J2,m1,m2,jpr)
6 CONTINUE
C
c error message, if not all possible Jtot's have been found
c if(ifind.ne.nj) then
c write(6,*)'ERROR IN ISOCGK IFIND.NE.NJ'
c stop
c endif
c sum CGKs over all possible Jtots (-> probabilities)
prbsum=0.
do 7 il=1,nj
prbsum=prbsum+pjin(il)
7 continue
c check for nonsense
IF(prbsum.le.0.) THEN
write(6,*)'ERROR IN ISOCGK 30:PRBSUM.LE.0.'
stop
END IF
c normalize PJIN(.) to 1
c now PJIN contains CGK-based probabilities for the different possible Jtots
Do 8 il=1,nj
pjin(il)=pjin(il)/prbsum
8 Continue
310 continue
c 5) now throw dice to determine one of the possible Jtots
zrand=ranf(0)
Do 9 il=1,nj
if(zrand.lt.pjin(il))then
c this is now the "real Jtot"
Jtot= Jmin +2*(il-1)
goto 11
else
zrand=zrand-pjin(il)
endif
9 Continue
11 Continue
goto 111
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c this is the entry for one in and >= two out particles
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ENTRY ISONEW4(JIN,MIN,JNEW,MNEW,ITAG)
IF(ITAG.EQ.-50) THEN
Jtot=Jin
M=Min
itag=0
END IF !itag=-50
c here now both cases (one/two-in particles) together
c now the in-channel is determined -> get out-channel
111 continue
c special cases
if(nexit.gt.4)then
write(6,*)'ISONEW: only <=4 outgoing Isospins can be coupled'
itag=-1
stop
return
endif
if(nexit.eq.3)then
Jnew(4)=0
Mnew(4)=0
endif
if(nexit.eq.2)then
Jnew(3)=0
Jnew(4)=0
Mnew(3)=0
Mnew(4)=0
c check for zero in out-channel:
if(Jnew(1).eq.0) then
mnew(1)=0
mnew(2)=m
return
elseif(Jnew(2).eq.0) then
mnew(2)=0
mnew(1)=m
return
endif
endif !nexit=2
c reset counters
m1pos=2*Jnew(1)+1
m2pos=2*Jnew(2)+1
m3pos=2*Jnew(3)+1
m4pos=2*Jnew(4)+1
Do 161 m1p=1,20
m1out(m1p)=0
m2out(m1p)=0
m3out(m1p)=0
m4out(m1p)=0
Do 162 m2p=1,m2pos
Do 163 m3p=1,m3pos
Do 164 m4p=1,m4pos
prbout(m1p,m2p,m3p,m4p)=0d0
164 Continue
163 Continue
162 Continue
161 Continue
c get min/maximal M
Do 100 i=1,4
Mmin(i)=-Jnew(i)
Mmax(i)=Jnew(i)
100 Continue
c calculate the possible |J_i M_i> combinations and their probability
do 112 j12=Iabs(Jnew(1)-Jnew(2)),(Jnew(1)+Jnew(2)),2
do 134 j34=Iabs(Jnew(3)-Jnew(4)),(Jnew(3)+Jnew(4)),2
m1pos=0
Do 41 m1pr=Mmin(1),Mmax(1),2
m1pos=m1pos+1
m1out(m1pos)=m1pr
m2pos=0
Do 42 m2pr=Mmin(2),Mmax(2),2
m2pos=m2pos+1
m2out(m2pos)=m2pr
m3pos=0
Do 43 m3pr=Mmin(3),Mmax(3),2
m3pos=m3pos+1
m3out(m3pos)=m3pr
m4pos=0
Do 44 m4pr=Mmin(4),Mmax(4),2
m4pos=m4pos+1
m4out(m4pos)=m4pr
c m4pr=m-m1pr-m2pr-m3pr
If(m1pr+m2pr+m3pr+m4pr.ne.m)goto 44
m12=m1pr+m2pr
m34=m3pr+m4pr
c12=clebsch(Jnew(1),Jnew(2),m1pr,m2pr,J12)
c34=clebsch(Jnew(3),Jnew(4),m3pr,m4pr,J34)
c_tot= clebsch(J12,J34,m12,m34,Jtot)
prbout(m1pos,m2pos,m3pos,m4pos)=
+ prbout(m1pos,m2pos,m3pos,m4pos)+c12*c34*c_tot
44 Continue
43 Continue
42 Continue
41 Continue
134 continue
112 continue
c error check
if(m1pos.eq.0.or.m2pos.eq.0.or.m3pos.eq.0.or.m4pos.eq.0)then
write(6,*)'IN ISOCGK/ISONEW: MPOS=0 ERROR'
write(6,*)"Can't couple Jin, Min=",Jtot,M
write(6,*)'To J1,J2,J3,J4=',Jnew(1),Jnew(2),Jnew(3),Jnew(4)
itag=-1
return
endif
c sum up all CGKs
prbsum=0.
Do 51 m1p=1,m1pos
Do 52 m2p=1,m2pos
Do 53 m3p=1,m3pos
Do 54 m4p=1,m4pos
prbsum=prbsum+prbout(m1p,m2p,m3p,m4p)
54 Continue
53 continue
52 continue
51 continue
c error check
IF(prbsum.le.0.) then
write(6,*)'ERROR IN ISOCGK/ISONEW:PRBSUM.LE.0.'
write(6,*)"Can't couple Jin, Min=",Jtot,M
write(6,*)'To J1,J2,J3,J4=',Jnew(1),Jnew(2),Jnew(3),Jnew(4)
stop
endif
c normalize to 1 (now we have real probabilities for different Mout combis)
Do 61 m1p=1,m1pos
Do 62 m2p=1,m2pos
Do 63 m3p=1,m3pos
Do 64 m4p=1,m4pos
prbout(m1p,m2p,m3p,m4p)=prbout(m1p,m2p,m3p,m4p)/prbsum
c write(*,*)'!p= ',m1out(m1p),m2out(m2p),m3out(m3p),
c & m4out(m4p),prbout(m1p,m2p,m3p,m4p)
64 Continue
63 Continue
62 Continue
61 Continue
c now determine according to the PRBOUT values the outgoing M combination
zrand=ranf(0)
Do 71 m1p=1,m1pos
Do 72 m2p=1,m2pos
Do 73 m3p=1,m3pos
Do 74 m4p=1,m4pos
if(zrand.lt.prbout(m1p,m2p,m3p,m4p)) then
Mnew(1)= M1out(m1p)
Mnew(2)= M2out(m2p)
Mnew(3)= M3out(m3p)
Mnew(4)= M4out(m4p)
goto 70
else
zrand=zrand-prbout(m1p,m2p,m3p,m4p)
endif
74 Continue
73 Continue
72 Continue
71 Continue
70 Continue
RETURN
END
C####C##1#########2#########3#########4#########5#########6#########7##
real*8 function fcgk(i1,i2,iz1,iz2,i) !L.A.W. Tue Aug 15 1995
c returns the normalized clebsch gorden factor also for combinations
c involving strange mesons and antibaryons
C####C##1#########2#########3#########4#########5#########6#########7##
implicit none
include 'comres.f'
real*8 c
integer i1,i2,iz1,iz2,i,iz,isoit,i12,i12a,ir,strit,icnt
logical nombbb
fcgk=0D0
icnt=0
c=0d0
iz=iz1+iz2
if(isoit(i).lt.iabs(iz))goto 1008
if(isoit(i1)*isoit(i2).eq.0)then
c=1d0
goto 1008
end if
call cgknrm(isoit(i),iz,isoit(i1),isoit(i2),iz1,iz2,ir,c)
if(i1.eq.i2.and.iz1.ne.iz2.and.iz1+iz2.eq.0)c=2d0*c
c... particle exchange
if(ir.ne.0)then
icnt=icnt+1
if(icnt.le.1)then
write(6,*)'fcgk: no iso-spin decomposition found for:',
@ i,iz,' to ',i1,iz1,'+',i2,iz2
write(6,*)' please check this channel'
end if
return
end if
if(strit(i).eq.0)then
c... this is now for particle+antiparticle (except nonstrange mesons)
i12=i1*i2
i12a=iabs(i12)
nombbb=i12a.lt.maxbar**2.or.i12a.gt.minmes**2
c... the charge conjugated states have the same weight
if(i12.lt.0.and.nombbb)then
c... for example anti-K* + K
if(i1.ne.-i2)c=c*5d-1
end if
end if
1008 fcgk=c
return
end
C####C##1#########2#########3#########4#########5#########6#########7##
subroutine cgknrm(JIN,MIN,J1NEW,J2NEW,M1IN,M2IN,ierr,cf)
C gives the normalized cg-factor i.e. poosibility into a given
C iso-spin decomposition of JIN,MIN into J1NEW,J2NEW,M1IN,M2IN
C ierr equals 0 if there is any alowed J1,J2,M1,M2 (not necessaryly
C equal to J1NEW,J2NEW,M1IN,M2).
C ierr is not equal 0 if all channels are iso-spin forbidden
C for specific couplings possibly involving strange particles or
C anti-particles function fcgk should be used (see beyond)
Coutput cf : normalized cg-factor
C####C##1#########2#########3#########4#########5#########6#########7##
implicit integer (i - n)
implicit real*8 (a - h , o - z)
DIMENSION PRBOUT(20),M1OUT(20)
real*8 clebsch
c the in particle of course defines Jtot and Mtot
cf =0d0
ierr = 0
ctp060202 1 JTOT=JIN
JTOT=JIN
M=MIN
ITAG=0
c check for zero in out-channel:
if(j1new.eq.0) then
m1new=0
m2new=m
return
elseif(j2new.eq.0) then
m2new=0
m1new=m
return
endif
c here now both cases (one/two in particles) together
c reset counters
M1POS=0
c loop over all J1,J2,Jtot,M1,M2 combinations
do 39 m1pr=-j1new,j1new,2
m2pr=m-m1pr
c if J1new and J2new and Jtot and Mtot create a match then store M1new
c inM1OUT array and the CGK in PRBOUT array; the counter for possible
c Mnew combinations is M1POS
M1POS=M1POS+1
M1OUT(M1POS)=M1PR
PRBOUT(M1POS)=clebsch(j1new,j2new,m1pr,m2pr,jtot)
if( ! (m1pr.eq.m2in.and.m2pr.eq.m1in).or.
@ (m2pr.eq.m2in.and.m1pr.eq.m1in))cf=cf+PRBOUT(M1POS)
39 continue
c error check
IF(M1POS.EQ.0) then
write(6,*)'IN ISOCGK: M1POS=0 ERROR'
write(6,*)'jtot,j1new,j2new,m',jtot,j1new,j2new,m
itag=-1
return
endif
c sum over all CGKs
PRBSUM=0.
DO 50 M1P=1,M1POS
PRBSUM=PRBSUM+PRBOUT(M1P)
50 continue
c error check
IF(PRBSUM.LT.1d-3) then
ierr = 1
cf = 0d0
return
endif
c normalize to 1 (now we have real probabilities for different Mout combis)
cf=cf/PRBSUM
RETURN
END
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
real*8 function dbweight(j1,m1,j2,m2,j1new,j2new)
c
c Revision : 1.0
c
c This function delivers a weight, based on a Clebsch Gordan
c coefficient, for detailed balance cross sections
C
c input:
c J1 : 2*I of ingoing particle 1
c J2 : 2*I of ingoing particle 2
c M1 : 2*I3 of ingoing particle 1
c M2 : 2*I3 of ingoing particle 2
c J1new : 2*I of outgoing particle 1
c J2new : 2*I of outgoing particle 2
c
c output:
c weight : weight factor
c
c function calls:
c clebsch
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
implicit none
integer j1,m1,j2,m2,j1new,j2new,jminol,jmaxol,jminnw,jmaxnw
integer nj,jpr,m,jmax,jmin,ind
real*8 clebsch,weight(10)
dbweight=0.d0
m=m1+m2
c determine number of possible states
c fist the in state
JMINOL= MAX0(IABS(J1-J2),IABS(M))
JMAXOL= J1+J2
c now the out state
JMINNW= MAX0(IABS(J1NEW-J2NEW),IABS(M))
JMAXNW= J1NEW+J2NEW
c which possible states match (are common for in AND out state)
JMIN = MAX0(JMINOL,JMINNW)
JMAX = MIN0(JMAXOL,JMAXNW)
NJ = (JMAX-JMIN)/2 +1
if(nj.lt.1) return
ind=0
do 18 jpr=jmin,jmax,2
ind=ind+1
weight(ind)=clebsch(j1,j2,m1,m2,jpr)
dbweight=dbweight+weight(ind)
18 continue
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
real*8 function clebsch(j1,j2,m1,m2,j3)
c
c Revision : 1.0
c
c This function delivers a Clebsch Gordan Coefficient, which has been
c calculated by w3j.
C
c input:
c J1 : 2*I of ingoing particle 1
c J2 : 2*I of ingoing particle 2
c M1 : 2*I3 of ingoing particle 1
c M2 : 2*I3 of ingoing particle 2
c J3 : 2*I of projection requested
c (i.e. resonance to be formed)
c
c output:
c clebsch : CGK**2
c
c function calls:
c w3j
c !!! first call function after intialization with loginit
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
implicit none
real*8 LogFak( 0 : 100 ),dj1,dj2,dj3,dm1,dm2,dm3,w3j
real*8 cfct,cgk
integer j1,j2,j3,m1,m2,ipot,jmm,jmm1
common /FACTORIALS/LogFak
integer jmax
parameter(jmax=7)
real*8 cgktab(0:jmax,0:jmax,-jmax:jmax,-jmax:jmax,0:jmax)
common /cgks/cgktab
c each cgk for j's in the range up to jmax is calculated only once
c and then stored in the cgktab table for further use
jmm1=max(j1,j2)
jmm=max(j3,jmm1)
if(jmm.gt.jmax.or.(cgktab(j1,j2,m1,m2,j3).lt.-8.d0)) then
dj1=dble(j1)/2.d0
dj2=dble(j2)/2.d0
dj3=dble(j3)/2.d0
dm1=dble(m1)/2.d0
dm2=dble(m2)/2.d0
dm3=-(dm1+dm2)
ipot=(j1+m1+j2-m2)/2
cfct=sqrt(2*dj3+1.d0)/(-(1.d0**ipot))
cgk=cfct*w3j(dj1,dj2,dj3,dm1,dm2,dm3)
clebsch=cgk**2
if(jmm.le.jmax) then
cgktab(j1,j2,m1,m2,j3)=clebsch
endif
else
clebsch=cgktab(j1,j2,m1,m2,j3)
endif
return
END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
function W3j( J1, J2, J3, M1, M2, M3 )
c
c
c This program calculates the 3-j wigner symbols according to the
c representation of A. Lindner.
c
c Reference:
c A. Lindner, Drehimpulse in der Quantenmechanik, Teubner 1984, P.39
c
c======================================================================
implicit none
c Program input
real*8 J1, J2, J3, M1, M2, M3
c Program returns
real*8 W3j
c Global variables
real*8 LogFak( 0 : 100 )
common /FACTORIALS/ LogFak
c Program variables
real*8 R1, R2, R3, R4, R5, R6, R7, R8, R9
real*8 N( 1 : 3, 1 : 3 )
real*8 Sum1, Sum2
real*8 Sigma
real*8 LF_R1, LF_R2, LF_R3, LF_R4, LF_R5, LF_R6
real*8 LF_R7, LF_R8, LF_R9
real*8 LF_Sigma
real*8 Hlp1, Hlp2, Pre
real*8 Summe, S( 0 : 100 )
integer*4 Signum
integer*4 in
real*8 minimal
integer*4 imin, jmin
integer*4 i, j
real*8 dn
real*8 dummy
c Start of calculation
c Evaluation due to equivalence with Regge symbol
c call LogInit
C
Sigma = J1 + J2 + J3
N( 1, 1 ) = -J1 + J2 + J3
N( 1, 2 ) = J1 - J2 + J3
N( 1, 3 ) = J1 + J2 - J3
N( 2, 1 ) = J1 - M1
N( 2, 2 ) = J2 - M2
N( 2, 3 ) = J3 - M3
N( 3, 1 ) = J1 + M1
N( 3, 2 ) = J2 + M2
N( 3, 3 ) = J3 + M3
do 20 i = 1, 3
do 10 j = 1, 3
if ( nint( N( i, j ) ) .lt. 0 ) goto 99999
10 continue
Sum1 = N( i, 1 ) + N( i, 2 ) + N( i, 3 )
Sum2 = N( 1, i ) + N( 2, i ) + N( 3, i )
if ( nint( Sum1 ) .ne. nint( Sigma ) ) goto 99999
if ( nint( Sum2 ) .ne. nint( Sigma ) ) goto 99999
20 continue
c do 101 i=1, 3
c write(6,'(3f14.5)') (N(i,j), j=1, 3 )
c 101 continue
imin = 1
jmin = 1
Signum = 1
minimal = N( 1, 1 )
c Looking for the smallest N( i, j )
do 40 i = 1, 3
do 30 j = 1, 3
if ( N(i,j) .lt. minimal ) then
minimal = N( i, j )
imin = i
jmin = j
endif
30 continue
40 continue
Signum = 1
if ( imin .gt. 1 ) then
do 50 j = 1, 3
dummy = N( 1, j )
N( 1, j ) = N( imin, j )
N( imin, j ) = dummy
50 continue
Signum = (-1)**nint( Sigma )
endif
if ( jmin .gt. 1 ) then
do 60 i = 1, 3
dummy = N( i, 1 )
N( i, 1 ) = N( i, jmin )
N( i, jmin ) = dummy
60 continue
Signum = (-1)**nint( Sigma ) * Signum
endif
R1 = N( 1, 1 )
R2 = N( 1, 2 )
R3 = N( 1, 3 )
R4 = N( 2, 1 )
R5 = N( 2, 2 )
R6 = N( 2, 3 )
R7 = N( 3, 1 )
R8 = N( 3, 2 )
R9 = N( 3, 3 )
LF_R1 = LogFak( nint( R1 ) )
LF_R2 = LogFak( nint( R2 ) )
LF_R3 = LogFak( nint( R3 ) )
LF_R4 = LogFak( nint( R4 ) )
LF_R5 = LogFak( nint( R5 ) )
LF_R6 = LogFak( nint( R6 ) )
LF_R7 = LogFak( nint( R7 ) )
LF_R8 = LogFak( nint( R8 ) )
LF_R9 = LogFak( nint( R9 ) )
LF_Sigma = LogFak( nint( Sigma+1.d0 ) )
Hlp1 = ( LF_R2 + LF_R3 + LF_R4 + LF_R7 - LF_Sigma -
& LF_R1 - LF_R5 - LF_R9 - LF_R6 - LF_R8 ) / 2.d0
Pre = dexp( Hlp1 ) * (-1)**( nint( R6 + R8 ) )
Hlp2 = LF_R6 - LogFak( nint(R6-R1) )
& + LF_R8 - LogFak( nint(R8-R1) )
S( 0 ) = dexp( Hlp2 )
Summe = S( 0 )
do 70 in = 1, nint( R1 )
dn = dble( in )
S( in ) = (-1)*S( in-1 ) * ( R1+1.d0-dn ) * ( R5+1.d0-dn )
& * ( R9+1.d0-dn ) / dn / ( R6-R1+dn ) / ( R8-R1+dn )
Summe = Summe + S( in )
70 continue
W3j = Pre * Summe * Signum
return
99999 W3j = 0.d0
return
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine LogInit
c=====================================================================
c
c This function computes the logarithm of the factorials and
c stores it in the array LogFak.
c
c=====================================================================
implicit none
c Program output
integer jmax
parameter(jmax=7) ! must be identical to value in clebsch!!!
real*8 cgktab(0:jmax,0:jmax,-jmax:jmax,-jmax:jmax,0:jmax)
common /cgks/cgktab
real*8 LogFak( 0 : 100 )
common / FACTORIALS / LogFak
c Program variables
integer*4 i,j1,j2,j3,m1,m2
c Program start
do 1 j1=0,jmax
do 1 j2=0,jmax
do 1 m1=-jmax,jmax
do 1 m2=-jmax,jmax
do 1 j3=0,jmax
cgktab(j1,j2,m1,m2,j3)=-9.d0
1 continue
LogFak( 0 ) = 0.d0
do 10 i = 1, 100
LogFak( i ) = LogFak( i-1 ) + dlog( dble( i ) )
10 continue
end