IAP GITLAB

Skip to content
Snippets Groups Projects
Commit e977c053 authored by Remy Prechelt's avatar Remy Prechelt Committed by Ralf Ulrich
Browse files

Initial implementation of CLI11 parser.

parent ad04cdad
No related branches found
No related tags found
No related merge requests found
......@@ -216,6 +216,7 @@ target_link_libraries (
CONAN_PKG::boost
CONAN_PKG::yaml-cpp
CONAN_PKG::arrow
CONAN_PKG::cli11
cnpy # for SaveBoostHistogram
)
......
......@@ -7,6 +7,7 @@ zlib/1.2.11
proposal/7.0.4
yaml-cpp/0.6.3
arrow/2.0.0
cli11/1.9.1
[build_requires]
readline/8.0 # this is only needed to fix a missing dependency in "bison" which is pulled-in by arrow
......
......@@ -56,6 +56,10 @@
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <CLI/App.hpp>
#include <CLI/Formatter.hpp>
#include <CLI/Config.hpp>
#include <iomanip>
#include <iostream>
#include <limits>
......@@ -103,26 +107,74 @@ int main(int argc, char** argv) {
logging::set_level(logging::level::info);
CORSIKA_LOG_INFO("corsika");
if (argc < 5) {
std::cerr << "usage: corsika <A> <Z> <energy/GeV> <Nevt> [seed] \n"
" if A=0, Z is interpreted as PDG code \n"
" if no seed is given, a random seed is chosen \n"
<< std::endl;
return 1;
// the main command line description
CLI::App app{"Simulate standard (downgoing) showers with CORSIKA 8."};
// some options that we want to fill in
int A, Z, nevent = 0;
// the following section adds the options to the parser
// we start by definining a sub-group for the primary ID
auto opt_Z = app.add_option("-Z", Z, "Atomic number for primary")
->check(CLI::Range(0, 26))
->group("Primary");
auto opt_A = app.add_option("-A", A, "Atomic mass number for primary")
->needs(opt_Z)
->check(CLI::Range(1, 58))
->group("Primary");
app.add_option("-p,--pdg", "PDG code for primary.")
->excludes(opt_A)
->excludes(opt_Z)
->group("Primary");
// the remainding options
app.add_option("-E,--energy", "Primary energy in GeV")
->required()
->check(CLI::PositiveNumber)
->group("Primary");
app.add_option("-z,--zenith", "Primary zenith angle (deg)")
->required()
->default_val(0.)
->check(CLI::Range(0, 90))
->group("Primary");
app.add_option("-a,--azimuth", "Primary azimuth angle (deg)")
->default_val(0.)
->check(CLI::Range(0, 360))
->group("Primary");
app.add_option("-N,--nevent", nevent, "The number of events/showers to run.")
->required()
->check(CLI::PositiveNumber)
->group("Library/Output");
app.add_option("-f,--filename", "Filename for output library.")
->required()
->default_val("corsika_library")
->check(CLI::NonexistentPath)
->group("Library/Output");
app.add_option("-s,--seed", "The random number seed.")
->default_val(12351739)
->check(CLI::NonNegativeNumber)
->group("Misc.");
app.add_flag("--force-interaction", "Force the location of the first interaction.")
->group("Misc.");
// parse the command line options into the variables
CLI11_PARSE(app, argc, argv);
// check that we got either PDG or A/Z
// this can be done with option_groups but the ordering
// gets all messed up
if (app.count("--pdg") == 0) {
if ((app.count("-A") == 0) || (app.count("-Z") == 0)) {
std::cerr << "If --pdg is not provided, then both -A and -Z are required."
<< std::endl;
return 1;
}
}
feenableexcept(FE_INVALID);
int seed = 0;
int number_showers = std::stoi(std::string(argv[4]));
if (argc > 5) { seed = std::stoi(std::string(argv[5])); }
// initialize random number sequence(s)
registerRandomStreams(seed);
registerRandomStreams(app["--seed"]->as<int>());
// setup environment, geometry
/* === START: SETUP ENVIRONMENT AND ROOT COORDINATE SYSTEM === */
using EnvType = setup::Environment;
EnvType env;
CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
......@@ -144,43 +196,43 @@ int main(int argc, char** argv) {
builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km);
builder.addLinearLayer(1e9_cm, 112.8_km + constants::EarthRadius::Mean);
builder.assemble(env);
/* === END: SETUP ENVIRONMENT AND ROOT COORDINATE SYSTEM === */
/* === START: CONSTRUCT PRIMARY PARTICLE === */
// pre-setup particle stack
unsigned short const A = std::stoi(std::string(argv[1]));
// parse the primary ID as a PDG or A/Z code
Code beamCode;
HEPEnergyType mass;
unsigned short Z = 0;
if (A > 0) {
beamCode = Code::Nucleus;
Z = std::stoi(std::string(argv[2]));
mass = get_nucleus_mass(A, Z);
} else {
int pdg = std::stoi(std::string(argv[2]));
beamCode = convert_from_PDG(PDGCode(pdg));
// check if we want to use a PDG code instead
if (app.count("--pdg") > 0) {
beamCode = convert_from_PDG(PDGCode(app["--pdg"]->as<int>()));
mass = get_mass(beamCode);
} else {
// check manually for proton and neutrons
if ((A == 0) && (Z == 1)) beamCode = Code::Proton;
if ((A == 1) && (Z == 1)) beamCode = Code::Neutron;
mass = get_nucleus_mass(A, Z);
}
HEPEnergyType const E0 = 1_GeV * std::stof(std::string(argv[3]));
double theta = 20.;
double phi = 180.;
auto const thetaRad = theta / 180. * M_PI;
auto const phiRad = phi / 180. * M_PI;
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const [px, py, pz] = momentumComponents(thetaRad, phiRad, P0);
// particle energy
HEPEnergyType const E0 = 1_GeV * app["--energy"]->as<float>();
// direction of the shower in (theta, phi) space
auto const thetaRad = app["--zenith"]->as<float>() / 180. * M_PI;
auto const phiRad = app["--azimuth"]->as<float>() / 180. * M_PI;
// convert Elab to Plab
HEPMomentumType P0 = sqrt((E0 - mass) * (E0 + mass));
// convert the momentum to the zenith and azimuth angle of the primary
auto const [px, py, pz] =
std::make_tuple(P0 * sin(thetaRad) * cos(phiRad), P0 * sin(thetaRad) * sin(phiRad),
-P0 * cos(thetaRad));
auto plab = MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << ",phi=" << phi << endl;
cout << "input momentum: " << plab.getComponents() / 1_GeV
<< ", norm = " << plab.getNorm() << endl;
/* === END: CONSTRUCT PRIMARY PARTICLE === */
/* === START: CONSTRUCT GEOMETRY === */
auto const observationHeight = 0_km + builder.getEarthRadius();
auto const injectionHeight = 111.75_km + builder.getEarthRadius();
auto const t = -observationHeight * cos(thetaRad) +
......@@ -193,21 +245,15 @@ int main(int argc, char** argv) {
-sin(thetaRad) * sin(phiRad), cos(thetaRad)}} *
t;
std::cout << "point of injection: " << injectionPos.getCoordinates() << std::endl;
// we make the axis much longer than the inj-core distance since the
// profile will go beyond the core, depending on zenith angle
std::cout << "shower axis length: " << (showerCore - injectionPos).getNorm() * 1.2
<< std::endl;
ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.2, env};
/* === END: CONSTRUCT GEOMETRY === */
// create the output manager that we then register outputs with
OutputManager output("corsika_outputs");
OutputManager output(app["--filename"]->as<std::string>());
// setup processes, decays and interactions
// corsika::qgsjetII::Interaction qgsjet;
/* === START: SETUP PROCESS LIST === */
corsika::sibyll::Interaction sibyll;
InteractionCounter sibyllCounted(sibyll);
......@@ -261,27 +307,46 @@ int main(int argc, char** argv) {
make_sequence(sibyllNucCounted, sibyllCounted));
auto decaySequence = make_sequence(decayPythia, decaySibyll);
// track writer
TrackWriter trackWriter;
output.add("tracks", trackWriter); // register TrackWriter
// observation plane
Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.}));
ObservationPlane observationLevel(obsPlane, DirectionVector(rootCS, {1., 0., 0.}));
// register the observation plane with the output
output.add("particles", observationLevel);
output.add("obslevel", observationLevel);
// assemble the final process sequence
auto sequence =
make_sequence(stackInspect, hadronSequence, decaySequence, emCascadeCounted,
emContinuous, cut, trackWriter, observationLevel, longprof);
/* === END: SETUP PROCESS LIST === */
// define air shower object, run simulation
// create the cascade object using the default stack and tracking implementation
setup::Tracking tracking;
setup::Stack stack;
Cascade EAS(env, tracking, sequence, output, stack);
// print our primary parameters all in one place
if (app["--pdg"]->count() > 0) {
CORSIKA_LOG_INFO("Primary PDG ID: {}", app["--pdg"]->as<int>());
} else {
CORSIKA_LOG_INFO("Primary Z/A: {}/{}", Z, A);
}
CORSIKA_LOG_INFO("Primary Energy: {}", E0);
CORSIKA_LOG_INFO("Primary Momentum: {}", P0);
CORSIKA_LOG_INFO("Point of Injection: {}", injectionPos.getCoordinates());
CORSIKA_LOG_INFO("Shower Axis Length: {}", (showerCore - injectionPos).getNorm() * 1.2);
// trigger the output manager to open the library for writing
output.startOfLibrary();
for (int i_shower = 1; i_shower < number_showers + 1; i_shower++) {
// loop over each shower
for (int i_shower = 1; i_shower < nevent + 1; i_shower++) {
CORSIKA_LOG_INFO("Shower {} / {} ", i_shower, nevent);
// trigger the start of the outputs for this shower
output.startOfShower();
// directory for outputs
......@@ -289,32 +354,20 @@ int main(int argc, char** argv) {
string const cMSHist_file = "inthist_cms_verticalEAS_" + to_string(i_shower) + ".npz";
string const longprof_file = "longprof_verticalEAS_" + to_string(i_shower) + ".txt";
CORSIKA_LOG_INFO("Shower {} / {} ", i_shower, number_showers);
// setup particle stack, and add primary particle
stack.clear();
// add the desired particle to the stack
if (A > 1) {
stack.addParticle(std::make_tuple(beamCode, plab, injectionPos, 0_ns, A, Z));
} else {
if (A == 1) {
if (Z == 1) {
stack.addParticle(std::make_tuple(Code::Proton, plab, injectionPos, 0_ns));
} else if (Z == 0) {
stack.addParticle(std::make_tuple(Code::Neutron, plab, injectionPos, 0_ns));
} else {
std::cerr << "illegal parameters" << std::endl;
return EXIT_FAILURE;
}
} else {
stack.addParticle(std::make_tuple(beamCode, plab, injectionPos, 0_ns));
}
stack.addParticle(std::make_tuple(beamCode, plab, injectionPos, 0_ns));
}
// to fix the point of first interaction, uncomment the following two lines:
// EAS.forceInteraction();
// if we want to fix the first location of the shower
if (app["--force-interaction"]) EAS.forceInteraction();
// run the shower
EAS.run();
cut.showResults();
......@@ -335,7 +388,11 @@ int main(int argc, char** argv) {
save_hist(hists.labHist(), labHist_file, true);
save_hist(hists.CMSHist(), cMSHist_file, true);
longprof.save(longprof_file);
// trigger the output manager to save this shower to disk
output.endOfShower();
}
// and finalize the output on disk
output.endOfLibrary();
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment