IAP GITLAB
Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
C
corsika
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pranav Sampathkumar
corsika
Commits
b69eef7f
Commit
b69eef7f
authored
6 years ago
by
Felix Riehn
Browse files
Options
Downloads
Patches
Plain Diff
added momentum to sibyll stack, implemented boost between sibyll stack and corsika stack
parent
1ea5333d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Documentation/Examples/cascade_example.cc
+198
-103
198 additions, 103 deletions
Documentation/Examples/cascade_example.cc
Framework/Cascade/SibStack.h
+30
-12
30 additions, 12 deletions
Framework/Cascade/SibStack.h
with
228 additions
and
115 deletions
Documentation/Examples/cascade_example.cc
+
198
−
103
View file @
b69eef7f
...
@@ -24,6 +24,7 @@
...
@@ -24,6 +24,7 @@
#include
<corsika/process/sibyll/ParticleConversion.h>
#include
<corsika/process/sibyll/ParticleConversion.h>
#include
<corsika/units/PhysicalUnits.h>
#include
<corsika/units/PhysicalUnits.h>
using
namespace
corsika
;
using
namespace
corsika
;
using
namespace
corsika
::
process
;
using
namespace
corsika
::
process
;
using
namespace
corsika
::
units
;
using
namespace
corsika
::
units
;
...
@@ -43,46 +44,59 @@ public:
...
@@ -43,46 +44,59 @@ public:
template
<
typename
Particle
>
template
<
typename
Particle
>
double
MinStepLength
(
Particle
&
p
,
setup
::
Trajectory
&
)
const
{
double
MinStepLength
(
Particle
&
p
,
setup
::
Trajectory
&
)
const
{
const
Code
corsikaBeamId
=
p
.
GetPID
();
// beam particles for sibyll : 1, 2, 3 for p, pi, k
// beam particles for sibyll : 1, 2, 3 for p, pi, k
// read from cross section code table
// read from cross section code table
int
kBeam
=
1
;
int
kBeam
=
process
::
sibyll
::
GetSibyllXSCode
(
corsikaBeamId
);
/*
bool
kInteraction
=
process
::
sibyll
::
CanInteract
(
corsikaBeamId
);
/*
the target should be defined by the Environment,
the target should be defined by the Environment,
ideally as full particle object so that the four momenta
ideally as full particle object so that the four momenta
and the boosts can be defined..
and the boosts can be defined..
*/
*/
// target nuclei: A < 18
// target nuclei: A < 18
// FOR NOW: assume target is oxygen
// FOR NOW: assume target is oxygen
int
kTarget
=
1
;
int
kTarget
=
16
;
double
beamEnergy
=
p
.
GetEnergy
()
/
1
_GeV
;
double
beamEnergy
=
p
.
GetEnergy
()
/
1
_GeV
;
std
::
cout
<<
"ProcessSplit: "
#warning boost to cm. still missing, sibyll cross section input is cm. energy!
<<
"MinStep: en: "
<<
beamEnergy
<<
" pid:"
<<
kBeam
<<
std
::
endl
;
double
prodCrossSection
,
dummy
,
dum1
,
dum2
,
dum3
,
dum4
;
std
::
cout
<<
"ProcessSplit: "
<<
"MinStep: input en: "
<<
beamEnergy
double
dumdif
[
3
];
<<
" beam can interact:"
<<
kBeam
<<
" beam XS code:"
<<
kBeam
if
(
kTarget
==
1
)
<<
" beam pid:"
<<
p
.
GetPID
()
sib_sigma_hp_
(
kBeam
,
beamEnergy
,
dum1
,
dum2
,
prodCrossSection
,
dumdif
,
dum3
,
dum4
);
<<
" target mass number:"
<<
kTarget
<<
std
::
endl
;
else
sib_sigma_hnuc_
(
kBeam
,
kTarget
,
beamEnergy
,
prodCrossSection
,
dummy
);
double
next_step
;
if
(
kInteraction
){
std
::
cout
<<
"ProcessSplit: "
<<
"MinStep: sibyll return: "
<<
prodCrossSection
<<
std
::
endl
;
double
prodCrossSection
,
dummy
,
dum1
,
dum2
,
dum3
,
dum4
;
CrossSectionType
sig
=
prodCrossSection
*
1
_mbarn
;
double
dumdif
[
3
];
std
::
cout
<<
"ProcessSplit: "
<<
"MinStep: CrossSection (mb): "
<<
sig
/
1
_mbarn
<<
std
::
endl
;
if
(
kTarget
==
1
)
sib_sigma_hp_
(
kBeam
,
beamEnergy
,
dum1
,
dum2
,
prodCrossSection
,
dumdif
,
dum3
,
dum4
);
const
MassType
nucleon_mass
=
0.93827
_GeV
/
corsika
::
units
::
si
::
constants
::
cSquared
;
else
std
::
cout
<<
"ProcessSplit: "
sib_sigma_hnuc_
(
kBeam
,
kTarget
,
beamEnergy
,
prodCrossSection
,
dummy
);
<<
"nucleon mass "
<<
nucleon_mass
<<
std
::
endl
;
// calculate interaction length in medium
std
::
cout
<<
"ProcessSplit: "
<<
"MinStep: sibyll return: "
<<
prodCrossSection
<<
std
::
endl
;
double
int_length
=
kTarget
*
(
nucleon_mass
/
1
_g
)
/
(
sig
/
1
_cmeter
/
1
_cmeter
);
CrossSectionType
sig
=
prodCrossSection
*
1
_mbarn
;
// pick random step lenth
std
::
cout
<<
"ProcessSplit: "
<<
"MinStep: CrossSection (mb): "
<<
sig
/
1
_mbarn
<<
std
::
endl
;
std
::
cout
<<
"ProcessSplit: "
<<
"interaction length (g/cm2): "
<<
int_length
<<
std
::
endl
;
const
MassType
nucleon_mass
=
0.93827
_GeV
/
corsika
::
units
::
si
::
constants
::
cSquared
;
// add exponential sampling
std
::
cout
<<
"ProcessSplit: "
<<
"nucleon mass "
<<
nucleon_mass
<<
std
::
endl
;
int
a
=
0
;
// calculate interaction length in medium
const
double
next_step
=
-
int_length
*
log
(
s_rndm_
(
a
));
double
int_length
=
kTarget
*
(
nucleon_mass
/
1
_g
)
/
(
sig
/
1
_cmeter
/
1
_cmeter
);
// pick random step lenth
std
::
cout
<<
"ProcessSplit: "
<<
"interaction length (g/cm2): "
<<
int_length
<<
std
::
endl
;
// add exponential sampling
int
a
=
0
;
next_step
=
-
int_length
*
log
(
s_rndm_
(
a
));
}
else
#warning define infinite interaction length? then we can skip the test in DoDiscrete()
next_step
=
1.e8
;
/*
/*
what are the units of the output? slant depth or 3space length?
what are the units of the output? slant depth or 3space length?
...
@@ -100,79 +114,147 @@ public:
...
@@ -100,79 +114,147 @@ public:
template
<
typename
Particle
,
typename
Stack
>
template
<
typename
Particle
,
typename
Stack
>
void
DoDiscrete
(
Particle
&
p
,
Stack
&
s
)
const
{
void
DoDiscrete
(
Particle
&
p
,
Stack
&
s
)
const
{
cout
<<
"DoDiscrete: "
<<
p
.
GetPID
()
<<
" interaction? "
cout
<<
"DoDiscrete: "
<<
p
.
GetPID
()
<<
" interaction? "
<<
process
::
sibyll
::
CanInteract
(
p
.
GetPID
()
)
<<
endl
;
<<
process
::
sibyll
::
CanInteract
(
p
.
GetPID
())
<<
endl
;
if
(
process
::
sibyll
::
CanInteract
(
p
.
GetPID
()
)
){
if
(
process
::
sibyll
::
CanInteract
(
p
.
GetPID
()))
{
cout
<<
"defining coordinates"
<<
endl
;
// coordinate system, get global frame of reference
CoordinateSystem
rootCS
=
CoordinateSystem
::
CreateRootCS
();
QuantityVector
<
length_d
>
const
coordinates
{
0
_m
,
0
_m
,
0
_m
};
Point
pOrig
(
rootCS
,
coordinates
);
/*
the target should be defined by the Environment,
ideally as full particle object so that the four momenta
and the boosts can be defined..
here we need: GetTargetMassNumber() or GetTargetPID()??
GetTargetMomentum() (zero in EAS)
*/
// FOR NOW: set target to proton
int
kTarget
=
1
;
//p.GetPID();
// proton mass in units of energy
const
EnergyType
proton_mass_en
=
0.93827
_GeV
;
//0.93827_GeV / si::constants::cSquared ;
cout
<<
"defining target momentum.."
<<
endl
;
// FOR NOW: target is always at rest
const
EnergyType
Etarget
=
0.
*
1
_GeV
+
proton_mass_en
;
const
auto
pTarget
=
super_stupid
::
MomentumVector
(
rootCS
,
0.
*
1
_GeV
/
si
::
constants
::
c
,
0.
*
1
_GeV
/
si
::
constants
::
c
,
0.
*
1
_GeV
/
si
::
constants
::
c
);
cout
<<
"target momentum (GeV/c): "
<<
pTarget
.
GetComponents
()
/
1
_GeV
*
si
::
constants
::
c
<<
endl
;
// const auto pBeam = super_stupid::MomentumVector(rootCS, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c);
// cout << "beam momentum: " << pBeam.GetComponents() << endl;
cout
<<
"beam momentum (GeV/c): "
<<
p
.
GetMomentum
().
GetComponents
()
/
1
_GeV
*
si
::
constants
::
c
<<
endl
;
// get energy of particle from stack
// get energy of particle from stack
/*
/*
stack is in GeV in lab. frame
stack is in GeV in lab. frame
convert to GeV in cm. frame
convert to GeV in cm. frame
(assuming proton at rest as target AND
(assuming proton at rest as target AND
assuming no pT, i.e. shower frame-z is aligned with hadron-int-frame-z)
assuming no pT, i.e. shower frame-z is aligned with hadron-int-frame-z)
*/
*/
EnergyType
E
=
p
.
GetEnergy
();
// cout << "defining total energy" << endl;
EnergyType
Ecm
=
sqrt
(
2.
*
E
*
0.93827
_GeV
);
// total energy: E_beam + E_target
// in lab. frame: E_beam + m_target*c**2
int
kBeam
=
process
::
sibyll
::
ConvertToSibyllRaw
(
p
.
GetPID
());
EnergyType
E
=
p
.
GetEnergy
();
EnergyType
Etot
=
E
+
Etarget
;
// cout << "tot. energy: " << Etot / 1_GeV << endl;
// cout << "defining total momentum" << endl;
// total momentum
super_stupid
::
MomentumVector
Ptot
=
p
.
GetMomentum
();
// + pTarget;
// cout << "tot. momentum: " << Ptot.GetComponents() / 1_GeV * si::constants::c << endl;
// cout << "inv. mass.." << endl;
// invariant mass, i.e. cm. energy
EnergyType
Ecm
=
sqrt
(
Etot
*
Etot
-
Ptot
.
squaredNorm
()
*
si
::
constants
::
cSquared
);
//sqrt( 2. * E * 0.93827_GeV );
// cout << "inv. mass: " << Ecm / 1_GeV << endl;
// cout << "boost parameters.." << endl;
/*
get transformation between Stack-frame and SibStack-frame
for EAS Stack-frame is lab. frame, could be different for CRMC-mode
the transformation should be derived from the input momenta
*/
// const double gamma = ( E + proton_mass * si::constants::cSquared ) / Ecm ;
// const double gambet = sqrt( E * E - proton_mass * proton_mass ) / Ecm;
const
double
gamma
=
Etot
/
Ecm
;
const
auto
gambet
=
Ptot
/
(
Ecm
/
si
::
constants
::
c
);
std
::
cout
<<
"ProcessSplit: "
<<
" DoDiscrete: gamma:"
<<
gamma
<<
endl
;
std
::
cout
<<
"ProcessSplit: "
<<
" DoDiscrete: gambet:"
<<
gambet
.
GetComponents
()
<<
endl
;
int
kBeam
=
process
::
sibyll
::
ConvertToSibyllRaw
(
p
.
GetPID
()
);
std
::
cout
<<
"ProcessSplit: "
<<
" DoDiscrete: E(GeV):"
<<
E
/
1
_GeV
<<
" Ecm(GeV): "
<<
Ecm
/
1
_GeV
<<
std
::
endl
;
if
(
E
<
8.5
_GeV
||
Ecm
<
10
_GeV
)
{
std
::
cout
<<
"ProcessSplit: "
<<
" DoDiscrete: dropping particle.."
<<
std
::
endl
;
p
.
Delete
();
fCount
++
;
}
else
{
// Sibyll does not know about units..
double
sqs
=
Ecm
/
1
_GeV
;
// running sibyll, filling stack
sibyll_
(
kBeam
,
kTarget
,
sqs
);
// running decays
//decsib_();
// print final state
int
print_unit
=
6
;
sib_list_
(
print_unit
);
// delete current particle
p
.
Delete
();
/*
// add particles from sibyll to stack
the target should be defined by the Environment,
// link to sibyll stack
ideally as full particle object so that the four momenta
SibStack
ss
;
and the boosts can be defined..
*/
// SibStack does not know about momentum yet so we need counter to access momentum array in Sibyll
// FOR NOW: set target to proton
int
i
=
-
1
;
int
kTarget
=
1
;
// p.GetPID();
super_stupid
::
MomentumVector
Ptot_final
(
rootCS
,
{
0.0
_newton_second
,
0.0
_newton_second
,
0.0
_newton_second
});
for
(
auto
&
psib
:
ss
){
std
::
cout
<<
"ProcessSplit: "
++
i
;
<<
" DoDiscrete: E(GeV):"
<<
E
/
1
_GeV
<<
" Ecm(GeV): "
<<
Ecm
/
1
_GeV
//transform energy to lab. frame, primitve
<<
std
::
endl
;
// compute beta_vec * p_vec
if
(
E
<
8.5
_GeV
||
Ecm
<
10
_GeV
)
{
// arbitrary Lorentz transformation based on sibyll routines
std
::
cout
<<
"ProcessSplit: "
const
auto
gammaBetaComponents
=
gambet
.
GetComponents
();
<<
" DoDiscrete: dropping particle.."
<<
std
::
endl
;
const
auto
pSibyllComponents
=
psib
.
GetMomentum
().
GetComponents
();
p
.
Delete
();
EnergyType
en_lab
=
0.
*
1
_GeV
;
fCount
++
;
MomentumType
p_lab_components
[
3
];
}
else
{
en_lab
=
psib
.
GetEnergy
()
*
gamma
;
// Sibyll does not know about units..
EnergyType
pnorm
=
0.
*
1
_GeV
;
double
sqs
=
Ecm
/
1
_GeV
;
for
(
int
j
=
0
;
j
<
3
;
++
j
)
// running sibyll, filling stack
pnorm
+=
(
pSibyllComponents
[
j
]
*
gammaBetaComponents
[
j
]
*
si
::
constants
::
c
)
/
(
gamma
+
1.
);
sibyll_
(
kBeam
,
kTarget
,
sqs
);
pnorm
+=
psib
.
GetEnergy
();
// running decays
// decsib_();
for
(
int
j
=
0
;
j
<
3
;
++
j
){
// print final state
p_lab_components
[
j
]
=
pSibyllComponents
[
j
]
-
(
-
1
)
*
pnorm
*
gammaBetaComponents
[
j
]
/
si
::
constants
::
c
;
int
print_unit
=
6
;
// cout << "p:" << j << " pSib (GeV/c): " << pSibyllComponents[j] / 1_GeV * si::constants::c
sib_list_
(
print_unit
);
// << " gb: " << gammaBetaComponents[j] << endl;
en_lab
-=
(
-
1
)
*
pSibyllComponents
[
j
]
*
gammaBetaComponents
[
j
]
*
si
::
constants
::
c
;
// delete current particle
}
p
.
Delete
();
// const EnergyType en_lab = psib.GetEnergy()*gamma + gambet * psib.GetMomentum() * si::constants::c );
// cout << " en cm (GeV): " << psib.GetEnergy() / 1_GeV << endl
// add particles from sibyll to stack
// << " en lab (GeV): " << en_lab / 1_GeV << endl;
// link to sibyll stack
// cout << " pz cm (GeV/c): " << psib.GetMomentum().GetComponents()[2] / 1_GeV * si::constants::c << endl
SibStack
ss
;
// << " pz lab (GeV/c): " << p_lab_components[2] / 1_GeV * si::constants::c << endl;
/*
get transformation between Stack-frame and SibStack-frame
// add to corsika stack
for EAS Stack-frame is lab. frame, could be different for CRMC-mode
auto
pnew
=
s
.
NewParticle
();
the transformation should be derived from the input momenta
pnew
.
SetEnergy
(
en_lab
);
in general transformation is rotation + boost
pnew
.
SetPID
(
process
::
sibyll
::
ConvertFromSibyll
(
psib
.
GetPID
()
)
);
*/
//cout << "momentum sib (cm): " << psib.GetMomentum().GetComponents() / 1_GeV * si::constants::c << endl;
const
EnergyType
proton_mass
=
0.93827
_GeV
;
const
double
gamma
=
(
E
+
proton_mass
)
/
(
Ecm
);
corsika
::
geometry
::
QuantityVector
<
momentum_d
>
p_lab_c
{
p_lab_components
[
0
],
const
double
gambet
=
sqrt
(
E
*
E
-
proton_mass
*
proton_mass
)
/
Ecm
;
p_lab_components
[
1
],
p_lab_components
[
2
]};
// SibStack does not know about momentum yet so we need counter to access momentum
pnew
.
SetMomentum
(
super_stupid
::
MomentumVector
(
rootCS
,
p_lab_c
)
);
// array in Sibyll
//cout << "momentum sib (lab): " << pnew.GetMomentum().GetComponents() / 1_GeV * si::constants::c << endl;
int
i
=
-
1
;
//cout << "s_cm (GeV2): " << (psib.GetEnergy() * psib.GetEnergy() - psib.GetMomentum().squaredNorm() * si::constants::cSquared ) / 1_GeV / 1_GeV << endl;
for
(
auto
&
p
:
ss
)
{
//cout << "s_lab (GeV2): " << (pnew.GetEnergy() * pnew.GetEnergy() - pnew.GetMomentum().squaredNorm() * si::constants::cSquared ) / 1_GeV / 1_GeV << endl;
++
i
;
Ptot_final
+=
pnew
.
GetMomentum
();
// transform to lab. frame, primitve
const
double
en_lab
=
gambet
*
s_plist_
.
p
[
2
][
i
]
+
gamma
*
p
.
GetEnergy
();
// add to corsika stack
auto
pnew
=
s
.
NewParticle
();
pnew
.
SetEnergy
(
en_lab
*
1
_GeV
);
pnew
.
SetPID
(
process
::
sibyll
::
ConvertFromSibyll
(
p
.
GetPID
()));
}
}
}
}
else
//cout << "tot. momentum final (GeV/c): " << Ptot_final.GetComponents() / 1_GeV * si::constants::c << endl;
}
}
else
p
.
Delete
();
p
.
Delete
();
}
}
...
@@ -238,8 +320,14 @@ double s_rndm_(int&) {
...
@@ -238,8 +320,14 @@ double s_rndm_(int&) {
int
main
()
{
int
main
()
{
tracking_line
::
TrackingLine
<
setup
::
Stack
>
tracking
;
// coordinate system, get global frame of reference
stack_inspector
::
StackInspector
<
setup
::
Stack
>
p0
(
true
);
CoordinateSystem
rootCS
=
CoordinateSystem
::
CreateRootCS
();
QuantityVector
<
length_d
>
const
coordinates
{
0
_m
,
0
_m
,
0
_m
};
Point
pOrig
(
rootCS
,
coordinates
);
stack_inspector
::
StackInspector
<
setup
::
Stack
,
setup
::
Trajectory
>
p0
(
true
);
ProcessSplit
p1
;
ProcessSplit
p1
;
const
auto
sequence
=
p0
+
p1
;
const
auto
sequence
=
p0
+
p1
;
setup
::
Stack
stack
;
setup
::
Stack
stack
;
...
@@ -248,9 +336,16 @@ int main() {
...
@@ -248,9 +336,16 @@ int main() {
stack
.
Clear
();
stack
.
Clear
();
auto
particle
=
stack
.
NewParticle
();
auto
particle
=
stack
.
NewParticle
();
EnergyType
E0
=
100
_GeV
;
EnergyType
E0
=
500
_GeV
;
MomentumType
P0
=
sqrt
(
E0
*
E0
-
0.93827
_GeV
*
0.93827
_GeV
)
/
si
::
constants
::
c
;
auto
plab
=
super_stupid
::
MomentumVector
(
rootCS
,
0.
*
1
_GeV
/
si
::
constants
::
c
,
0.
*
1
_GeV
/
si
::
constants
::
c
,
P0
);
particle
.
SetEnergy
(
E0
);
particle
.
SetEnergy
(
E0
);
particle
.
SetPID
(
Code
::
Proton
);
particle
.
SetMomentum
(
plab
);
particle
.
SetPID
(
Code
::
Proton
);
EAS
.
Init
();
EAS
.
Init
();
EAS
.
Run
();
EAS
.
Run
();
cout
<<
"Result: E0="
<<
E0
/
1
_GeV
<<
"GeV, count="
<<
p1
.
GetCount
()
<<
endl
;
cout
<<
"Result: E0="
<<
E0
/
1
_GeV
<<
"GeV, count="
<<
p1
.
GetCount
()
<<
endl
;
...
...
This diff is collapsed.
Click to expand it.
Framework/Cascade/SibStack.h
+
30
−
12
View file @
b69eef7f
...
@@ -10,6 +10,8 @@
...
@@ -10,6 +10,8 @@
using
namespace
std
;
using
namespace
std
;
using
namespace
corsika
::
stack
;
using
namespace
corsika
::
stack
;
using
namespace
corsika
::
units
;
using
namespace
corsika
::
geometry
;
class
SibStackData
{
class
SibStackData
{
...
@@ -17,16 +19,33 @@ public:
...
@@ -17,16 +19,33 @@ public:
void
Init
();
void
Init
();
void
Clear
()
{
s_plist_
.
np
=
0
;
}
void
Clear
()
{
s_plist_
.
np
=
0
;
}
int
GetSize
()
const
{
return
s_plist_
.
np
;
}
int
GetSize
()
const
{
return
s_plist_
.
np
;
}
#warning check actual capacity of sibyll stack
int
GetCapacity
()
const
{
return
8000
;
}
int
GetCapacity
()
const
{
return
8000
;
}
void
SetId
(
const
int
i
,
const
int
v
)
{
s_plist_
.
llist
[
i
]
=
v
;
}
void
SetEnergy
(
const
int
i
,
const
double
v
)
{
s_plist_
.
p
[
3
][
i
]
=
v
;
}
void
SetId
(
const
int
i
,
const
int
v
)
{
s_plist_
.
llist
[
i
]
=
v
;
}
void
SetEnergy
(
const
int
i
,
const
EnergyType
v
)
{
s_plist_
.
p
[
3
][
i
]
=
v
/
1
_GeV
;
}
void
SetMomentum
(
const
int
i
,
const
super_stupid
::
MomentumVector
&
v
)
{
auto
tmp
=
v
.
GetComponents
();
for
(
int
idx
=
0
;
idx
<
3
;
++
idx
)
s_plist_
.
p
[
idx
][
i
]
=
tmp
[
idx
]
/
1
_GeV
*
si
::
constants
::
c
;
}
int
GetId
(
const
int
i
)
const
{
return
s_plist_
.
llist
[
i
];
}
int
GetId
(
const
int
i
)
const
{
return
s_plist_
.
llist
[
i
];
}
double
GetEnergy
(
const
int
i
)
const
{
return
s_plist_
.
p
[
3
][
i
];
}
EnergyType
GetEnergy
(
const
int
i
)
const
{
return
s_plist_
.
p
[
3
][
i
]
*
1
_GeV
;
}
super_stupid
::
MomentumVector
GetMomentum
(
const
int
i
)
const
{
CoordinateSystem
rootCS
=
CoordinateSystem
::
CreateRootCS
();
corsika
::
geometry
::
QuantityVector
<
momentum_d
>
components
{
s_plist_
.
p
[
0
][
i
]
*
1
_GeV
/
si
::
constants
::
c
,
s_plist_
.
p
[
1
][
i
]
*
1
_GeV
/
si
::
constants
::
c
,
s_plist_
.
p
[
2
][
i
]
*
1
_GeV
/
si
::
constants
::
c
};
super_stupid
::
MomentumVector
v1
(
rootCS
,
components
);
return
v1
;
}
void
Copy
(
const
int
i1
,
const
int
i2
)
{
void
Copy
(
const
int
i1
,
const
int
i2
)
{
s_plist_
.
llist
[
i1
]
=
s_plist_
.
llist
[
i2
];
s_plist_
.
llist
[
i1
]
=
s_plist_
.
llist
[
i2
];
s_plist_
.
p
[
3
][
i1
]
=
s_plist_
.
p
[
3
][
i2
];
s_plist_
.
p
[
3
][
i1
]
=
s_plist_
.
p
[
3
][
i2
];
...
@@ -46,12 +65,11 @@ class ParticleInterface : public ParticleBase<StackIteratorInterface> {
...
@@ -46,12 +65,11 @@ class ParticleInterface : public ParticleBase<StackIteratorInterface> {
public:
public:
void
SetEnergy
(
const
double
v
)
{
GetStackData
().
SetEnergy
(
GetIndex
(),
v
);
}
void
SetEnergy
(
const
double
v
)
{
GetStackData
().
SetEnergy
(
GetIndex
(),
v
);
}
doubl
e
GetEnergy
()
const
{
return
GetStackData
().
GetEnergy
(
GetIndex
());
}
EnergyTyp
e
GetEnergy
()
const
{
return
GetStackData
().
GetEnergy
(
GetIndex
());
}
void
SetPID
(
const
int
v
)
{
GetStackData
().
SetId
(
GetIndex
(),
v
);
}
void
SetPID
(
const
int
v
)
{
GetStackData
().
SetId
(
GetIndex
(),
v
);
}
corsika
::
process
::
sibyll
::
SibyllCode
GetPID
()
const
{
corsika
::
process
::
sibyll
::
SibyllCode
GetPID
()
const
{
return
static_cast
<
corsika
::
process
::
sibyll
::
SibyllCode
>
(
GetStackData
().
GetId
(
GetIndex
()));
}
return
static_cast
<
corsika
::
process
::
sibyll
::
SibyllCode
>
(
super_stupid
::
MomentumVector
GetMomentum
()
const
{
return
GetStackData
().
GetMomentum
(
GetIndex
());
}
GetStackData
().
GetId
(
GetIndex
()));
}
};
};
typedef
Stack
<
SibStackData
,
ParticleInterface
>
SibStack
;
typedef
Stack
<
SibStackData
,
ParticleInterface
>
SibStack
;
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment