IAP GITLAB

Skip to content
Snippets Groups Projects
Commit 8b62c42c authored by ralfulrich's avatar ralfulrich
Browse files

this file has a typo

parent 8a3603d3
No related branches found
No related tags found
No related merge requests found
/*
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#pragma once
#include <cnpy/cnpy.hpp>
#include <boost/histogram.hpp>
#include <functional>
#include <memory>
#include <numeric>
#include <utility>
#include <vector>
#include <string>
namespace corsika {
enum class SaveMode { overwrite, append };
/**
* This functions saves a boost::histogram into a numpy file. Only rather basic axis
* types are supported: regular, variable, integer, category<int>. Only "ordinary" bin
* counts (i.e. a double or int) are supported, nothing fancy like profiles.
*
* Note that this function makes a temporary, dense copy of the histogram, which could
* be an issue for huge sizes (e.g. for high dimensions)
*/
template <class Axes, class Storage>
inline void save_hist(boost::histogram::histogram<Axes, Storage> const& h,
std::string const& filename, SaveMode mode = SaveMode::append) {
unsigned const rank = h.rank();
// append vs. overwrite
const std::string mode_str = (mode == SaveMode::append ? "a" : "w");
std::vector<size_t> axes_dims;
axes_dims.reserve(rank);
auto overflow = std::make_unique<bool[]>(rank);
auto underflow = std::make_unique<bool[]>(rank);
std::vector<char> axis_types;
axis_types.reserve(rank);
for (unsigned int i = 0; i < rank; ++i) {
auto const& ax = h.axis(i);
unsigned const has_underflow = (ax.options() & 0x01) ? 1 : 0;
unsigned const has_overflow = (ax.options() & 0x02) ? 1 : 0;
underflow[i] = has_underflow;
overflow[i] = has_overflow;
axes_dims.emplace_back(ax.size() + has_underflow + has_overflow);
if (ax.continuous()) {
axis_types.push_back('c');
std::vector<double> ax_edges;
ax_edges.reserve(ax.size() + 1);
for (int j = 0; j < ax.size(); ++j) { ax_edges.push_back(ax.bin(j).lower()); }
ax_edges.push_back(ax.bin(ax.size() - 1).upper());
cnpy::npz_save(filename, std::string{"binedges_"} + std::to_string(i),
ax_edges.data(), {ax_edges.size()}, mode_str);
} else {
axis_types.push_back('d');
std::vector<int64_t> bins; // we assume that discrete axes have integer bins
bins.reserve(ax.size());
for (int j = 0; j < ax.size(); ++j) { bins.push_back(ax.bin(j).lower()); }
cnpy::npz_save(filename, std::string{"bins_"} + std::to_string(i), bins.data(),
{bins.size()}, mode_str);
}
}
cnpy::npz_save(filename, std::string{"axistypes"}, axis_types.data(), {rank},
mode_str);
cnpy::npz_save(filename, std::string{"overflow"}, overflow.get(), {rank}, mode_str);
cnpy::npz_save(filename, std::string{"underflow"}, underflow.get(), {rank}, mode_str);
auto const prod_axis_size = std::accumulate(axes_dims.cbegin(), axes_dims.cend(),
unsigned{1}, std::multiplies<>());
auto temp = std::make_unique<float[]>(prod_axis_size);
assert(prod_axis_size == h.size());
// reduce multi-dim. to 1-dim, row-major (i.e., last axis index is contiguous in
// memory) take special care of underflow bins which have -1 as index and thus need
// to be shifted by +1
for (auto&& x : indexed(h, boost::histogram::coverage::all)) {
int p = 0;
for (unsigned axis_index = 0; axis_index < rank; ++axis_index) {
int const offset_underflow = (h.axis(axis_index).options() & 0x01) ? 1 : 0;
auto k = x.index(axis_index) + offset_underflow;
p = k + p * axes_dims.at(axis_index);
}
temp[p] = *x;
}
cnpy::npz_save(filename, "data", temp.get(), axes_dims, mode_str);
// In Python this array can directly be assigned to a histogram view if that
// histogram has its axes correspondingly: hist.view(flow=True)[:] = file['data']
}
} // namespace corsika
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment