Forked from
Air Shower Physics / corsika
1310 commits behind the upstream repository.
-
ralfulrich authoredralfulrich authored
geometry_example.cpp 2.86 KiB
/*
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/framework/geometry/Point.hpp>
#include <corsika/framework/geometry/RootCoordinateSystem.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/geometry/Vector.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/core/Logging.hpp>
#include <cstdlib>
#include <typeinfo>
using namespace corsika;
int main() {
logging::set_level(logging::level::info);
CORSIKA_LOG_INFO("geometry_example");
// define the root coordinate system
CoordinateSystemPtr const& root = get_root_CoordinateSystem();
// another CS defined by a translation relative to the root CS
CoordinateSystemPtr cs2 = make_translation(root, {0_m, 0_m, 1_m});
// rotations are possible, too; parameters are axis vector and angle
CoordinateSystemPtr cs3 =
make_rotation(root, QuantityVector<length_d>{1_m, 0_m, 0_m}, 90 * degree_angle);
// now let's define some geometrical objects:
Point const p1(root, {0_m, 0_m, 0_m}); // the origin of the root CS
Point const p2(cs2, {0_m, 0_m, 0_m}); // the origin of cs2
Vector<length_d> const diff =
p2 -
p1; // the distance between the points, basically the translation vector given above
auto const norm = diff.getSquaredNorm(); // squared length with the right dimension
// print the components of the vector as given in the different CS
CORSIKA_LOG_INFO(
"p2-p1 components in root: {} \n"
"p2-p1 components in cs2: {} \n"
"p2-p1 components in cs3: {}\n"
"p2-p1 norm^2: {} \n",
diff.getComponents(root), diff.getComponents(cs2), diff.getComponents(cs3), norm);
assert(norm == 1 * meter * meter);
Sphere s(p1, 10_m); // define a sphere around a point with a radius
CORSIKA_LOG_INFO("p1 inside s:{} ", s.contains(p2));
assert(s.contains(p2) == 1);
Sphere s2(p1, 3_um); // another sphere
CORSIKA_LOG_INFO("p1 inside s2: {}", s2.contains(p2));
assert(s2.contains(p2) == 0);
// let's try parallel projections:
auto const v1 = Vector<length_d>(root, {1_m, 1_m, 0_m});
auto const v2 = Vector<length_d>(root, {1_m, 0_m, 0_m});
auto const v3 = v1.getParallelProjectionOnto(v2);
// cross product
auto const cross =
v1.cross(v2).normalized(); // normalized() returns dimensionless, normalized vectors
// if a CS is not given as parameter for getComponents(), the components
// in the "home" CS are returned
CORSIKA_LOG_INFO(
"v1: {} \n"
"v2: {}\n "
"parallel projection of v1 onto v2: {} \n"
"normalized cross product of v1 x v2 {} \n",
v1.getComponents(), v2.getComponents(), v3.getComponents(), cross.getComponents());
return EXIT_SUCCESS;
}