Forked from
Air Shower Physics / corsika
2048 commits behind the upstream repository.
-
ralfulrich authoredralfulrich authored
cascade_example.cpp 5.70 KiB
/*
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/framework/logging/Logging.hpp>
#include <corsika/media/Environment.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/ShowerAxis.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/setup/SetupEnvironment.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <corsika/modules/BetheBlochPDG.hpp>
#include <corsika/modules/StackInspector.hpp>
#include <corsika/modules/TrackingLine.hpp>
#include <corsika/modules/Sibyll.hpp>
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/TrackWriter.hpp>
/*
NOTE, WARNING, ATTENTION
The .../Random.hpppp implement the hooks of external modules to the C8 random
number generator. It has to occur excatly ONCE per linked
executable. If you include the header below multiple times and
link this togehter, it will fail.
*/
#include <corsika/modules/sibyll/Random.hpp>
#include <corsika/modules/urqmd/Random.hpp>
#include <iostream>
#include <limits>
using namespace corsika;
using namespace std;
//
// The example main program for a particle cascade
//
int main() {
logging::set_level(logging::level::info);
std::cout << "cascade_example" << std::endl;
const LengthType height_atmosphere = 112.8_km;
feenableexcept(FE_INVALID);
// initialize random number sequence(s)
RNGManager::getInstance().registerRandomStream("cascade");
// setup environment, geometry
setup::Environment env;
auto& universe = *(env.getUniverse());
CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
auto world = setup::Environment::createNode<Sphere>(
Point{rootCS, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
using MyHomogeneousModel = MediumPropertyModel<
UniformMagneticField<HomogeneousMedium<setup::EnvironmentInterface>>>;
// fraction of oxygen
float const fox = 0.20946;
auto const props = world->setModelProperties<MyHomogeneousModel>(
Medium::AirDry1Atm, MagneticFieldVector(rootCS, 0_T, 0_T, 0_T),
1_kg / (1_m * 1_m * 1_m),
NuclearComposition(std::vector<Code>{Code::Nitrogen, Code::Oxygen},
std::vector<float>{1.f - fox, fox}));
auto innerMedium =
setup::Environment::createNode<Sphere>(Point{rootCS, 0_m, 0_m, 0_m}, 5000_m);
innerMedium->setModelProperties(props);
world->addChild(std::move(innerMedium));
universe.addChild(std::move(world));
// setup particle stack, and add primary particle
setup::Stack stack;
stack.clear();
const Code beamCode = Code::Nucleus;
const int nuclA = 4;
const int nuclZ = int(nuclA / 2.15 + 0.7);
const HEPMassType mass = get_nucleus_mass(nuclA, nuclZ);
const HEPEnergyType E0 = nuclA * 1_TeV;
double theta = 0.;
double phi = 0.;
Point const injectionPos(
rootCS, 0_m, 0_m,
height_atmosphere); // this is the CORSIKA 7 start of atmosphere/universe
ShowerAxis const showerAxis{injectionPos, Vector{rootCS, 0_m, 0_m, -5000_km}, env};
{
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const [px, py, pz] =
momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0);
auto plab = MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << " phi=" << phi << endl;
cout << "input momentum: " << plab.getComponents() / 1_GeV << endl;
stack.addParticle(
std::make_tuple(beamCode, E0, plab, injectionPos, 0_ns, nuclA, nuclZ));
}
// setup processes, decays and interactions
tracking_line::TrackingLine tracking;
StackInspector<setup::Stack> stackInspect(1, true, E0);
RNGManager::getInstance().registerRandomStream("sibyll");
RNGManager::getInstance().registerRandomStream("pythia");
corsika::sibyll::Interaction sibyll;
corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
corsika::sibyll::Decay decay;
// cascade with only HE model ==> HE cut
ParticleCut cut(80_GeV, true, true);
TrackWriter trackWriter("tracks.dat");
BetheBlochPDG eLoss{showerAxis, cut.getECut()};
// assemble all processes into an ordered process list
auto sequence =
make_sequence(stackInspect, sibyll, sibyllNuc, decay, eLoss, cut, trackWriter);
// define air shower object, run simulation
Cascade EAS(env, tracking, sequence, stack);
EAS.run();
eLoss.printProfile(); // print longitudinal profile
cut.showResults();
const HEPEnergyType Efinal =
cut.getCutEnergy() + cut.getInvEnergy() + cut.getEmEnergy();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
cout << "total dEdX energy (GeV): " << eLoss.getTotal() / 1_GeV << endl
<< "relative difference (%): " << eLoss.getTotal() / E0 * 100 << endl;
cut.reset();
}