IAP GITLAB

Skip to content
Snippets Groups Projects
vertical_EAS.cpp 10.5 KiB
Newer Older
ralfulrich's avatar
ralfulrich committed
/*
 * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
ralfulrich's avatar
ralfulrich committed
 *
 * This software is distributed under the terms of the GNU General Public
 * Licence version 3 (GPL Version 3). See file LICENSE for a full version of
 * the license.
 */

/* clang-format off */
// InteractionCounter used boost/histogram, which
// fails if boost/type_traits have been included before. Thus, we have
// to include it first...
ralfulrich's avatar
ralfulrich committed
#include <corsika/framework/process/InteractionCounter.hpp>
/* clang-format on */
ralfulrich's avatar
ralfulrich committed
#include <corsika/framework/geometry/Plane.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/framework/core/Logging.hpp>
#include <corsika/framework/utility/SaveBoostHistogram.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/process/SwitchProcessSequence.hpp>
#include <corsika/framework/process/InteractionCounter.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/geometry/PhysicalGeometry.hpp>

#include <corsika/output/OutputManager.hpp>
#include <corsika/output/NoOutput.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/media/Environment.hpp>
#include <corsika/media/FlatExponential.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMagneticFieldModel.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/media/ShowerAxis.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/media/CORSIKA7Atmospheres.hpp>
ralfulrich's avatar
ralfulrich committed

#include <corsika/modules/BetheBlochPDG.hpp>
#include <corsika/modules/LongitudinalProfile.hpp>
#include <corsika/modules/ObservationPlane.hpp>
#include <corsika/modules/StackInspector.hpp>
#include <corsika/modules/TrackWriter.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/Pythia8.hpp>
#include <corsika/modules/Sibyll.hpp>
#include <corsika/modules/UrQMD.hpp>
#include <corsika/modules/Epos.hpp>
ralfulrich's avatar
ralfulrich committed

#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
ralfulrich's avatar
ralfulrich committed

#include <iomanip>
#include <iostream>
#include <limits>
#include <string>
ralfulrich's avatar
ralfulrich committed

ralfulrich's avatar
ralfulrich committed
/*
  NOTE, WARNING, ATTENTION
ralfulrich's avatar
ralfulrich committed
  The .../Random.hpppp implement the hooks of external modules to the C8 random
  number generator. It has to occur excatly ONCE per linked
  executable. If you include the header below multiple times and
  link this togehter, it will fail.
 */
#include <corsika/modules/Random.hpp>
ralfulrich's avatar
ralfulrich committed

using namespace corsika;
ralfulrich's avatar
ralfulrich committed
using namespace std;
ralfulrich's avatar
ralfulrich committed
using Particle = setup::Stack::particle_type;
void registerRandomStreams(int seed) {
  RNGManager<>::getInstance().registerRandomStream("cascade");
  RNGManager<>::getInstance().registerRandomStream("sibyll");
  RNGManager<>::getInstance().registerRandomStream("pythia");
  RNGManager<>::getInstance().registerRandomStream("urqmd");
  RNGManager<>::getInstance().registerRandomStream("proposal");
  if (seed == 0) {
    std::random_device rd;
    seed = rd();
    cout << "new random seed (auto) " << seed << endl;
  }
  RNGManager<>::getInstance().setSeed(seed);
ralfulrich's avatar
ralfulrich committed

template <typename T>
ralfulrich's avatar
ralfulrich committed
using MyExtraEnv = MediumPropertyModel<UniformMagneticField<T>>;
ralfulrich's avatar
ralfulrich committed

// argv : 1.number of nucleons, 2.number of protons,
//        3.total energy in GeV, 4.number of showers,
//        5.seed (0 by default to generate random values for all)
int main(int argc, char** argv) {
ralfulrich's avatar
ralfulrich committed

ralfulrich's avatar
ralfulrich committed
  logging::set_level(logging::level::info);
ralfulrich's avatar
ralfulrich committed
  CORSIKA_LOG_INFO("vertical_EAS");
ralfulrich's avatar
ralfulrich committed
  if (argc < 4) {
    std::cerr << "usage: vertical_EAS <A> <Z> <energy/GeV> [seed] \n"
                 "       if A=0, Z is interpreted as PDG code \n"
                 "       if no seed is given, a random seed is chosen \n"
              << std::endl;
ralfulrich's avatar
ralfulrich committed
  feenableexcept(FE_INVALID);
ralfulrich's avatar
ralfulrich committed
  if (argc > 4) { seed = std::stoi(std::string(argv[4])); }
ralfulrich's avatar
ralfulrich committed
  // initialize random number sequence(s)
  registerRandomStreams(seed);
ralfulrich's avatar
ralfulrich committed

  // setup environment, geometry
  using EnvType = setup::Environment;
ralfulrich's avatar
ralfulrich committed
  EnvType env;
ralfulrich's avatar
ralfulrich committed
  CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
  Point const center{rootCS, 0_m, 0_m, 0_m};
ralfulrich's avatar
ralfulrich committed

  // build a Linsley US Standard atmosphere into `env`
  create_5layer_atmosphere<setup::EnvironmentInterface, MyExtraEnv>(
      env, AtmosphereId::LinsleyUSStd, center, Medium::AirDry1Atm,
      MagneticFieldVector{rootCS, 0_T, 50_uT, 0_T});
  // pre-setup particle stack
  unsigned short const A = std::stoi(std::string(argv[1]));
  Code beamCode;
  unsigned short Z = 0;
  if (A > 0) {
    Z = std::stoi(std::string(argv[2]));
ralfulrich's avatar
ralfulrich committed
    if (A == 1 && Z == 0)
      beamCode = Code::Neutron;
    else if (A == 1 && Z == 1)
      beamCode = Code::Proton;
    else
      beamCode = get_nucleus_code(A, Z);
  } else {
    int pdg = std::stoi(std::string(argv[2]));
    beamCode = convert_from_PDG(PDGCode(pdg));
  }
ralfulrich's avatar
ralfulrich committed
  HEPEnergyType mass = get_mass(beamCode);
  HEPEnergyType const E0 = 1_GeV * std::stof(std::string(argv[3]));
ralfulrich's avatar
ralfulrich committed
  auto const thetaRad = theta / 180. * constants::pi;
  auto const phiRad = phi / 180. * constants::pi;

  auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
    return sqrt((Elab - m) * (Elab + m));
  };
  HEPMomentumType P0 = elab2plab(E0, mass);
  auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
    return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
                           -ptot * cos(theta));
  };

  auto const [px, py, pz] = momentumComponents(thetaRad, phiRad, P0);
  auto plab = MomentumVector(rootCS, {px, py, pz});
  cout << "input particle: " << beamCode << endl;
  cout << "input angles: theta=" << theta << ",phi=" << phi << endl;
  cout << "input momentum: " << plab.getComponents() / 1_GeV
       << ", norm = " << plab.getNorm() << endl;

  auto const observationHeight = 0_km + constants::EarthRadius::Mean;
  auto const injectionHeight = 111.75_km + constants::EarthRadius::Mean;
  auto const t = -observationHeight * cos(thetaRad) +
                 sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) +
                      static_pow<2>(injectionHeight));
  Point const showerCore{rootCS, 0_m, 0_m, observationHeight};
  Point const injectionPos =
      showerCore + DirectionVector{rootCS,
                                   {-sin(thetaRad) * cos(phiRad),
                                    -sin(thetaRad) * sin(phiRad), cos(thetaRad)}} *
                       t;

  std::cout << "point of injection: " << injectionPos.getCoordinates() << std::endl;

  // we make the axis much longer than the inj-core distance since the
  // profile will go beyond the core, depending on zenith angle
  std::cout << "shower axis length: " << (showerCore - injectionPos).getNorm() * 1.5
            << std::endl;

ralfulrich's avatar
ralfulrich committed
  ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.5, env, false,
                              1000};
  // create the output manager that we then register outputs with
  OutputManager output("vertical_EAS_outputs");

  // setup processes, decays and interactions

  corsika::sibyll::Interaction sibyll;
  InteractionCounter sibyllCounted(sibyll);

  corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
  InteractionCounter sibyllNucCounted(sibyllNuc);

  corsika::pythia8::Decay decayPythia;

  // use sibyll decay routine for decays of particles unknown to pythia
  corsika::sibyll::Decay decaySibyll{{
      Code::N1440Plus,
      Code::N1440MinusBar,
      Code::N1440_0,
      Code::N1440_0Bar,
      Code::N1710Plus,
      Code::N1710MinusBar,
      Code::N1710_0,
      Code::N1710_0Bar,

      Code::Pi1300Plus,
      Code::Pi1300Minus,
      Code::Pi1300_0,

      Code::KStar0_1430_0,
      Code::KStar0_1430_0Bar,
      Code::KStar0_1430_Plus,
      Code::KStar0_1430_MinusBar,
  }};

  decaySibyll.printDecayConfig();

  ParticleCut cut{60_GeV, 60_GeV, 60_GeV, 60_GeV, true};

  corsika::urqmd::UrQMD urqmd;
  InteractionCounter urqmdCounted{urqmd};
  StackInspector<setup::Stack> stackInspect(50000, false, E0);

  // assemble all processes into an ordered process list
  struct EnergySwitch {
    HEPEnergyType cutE_;
    EnergySwitch(HEPEnergyType cutE)
        : cutE_(cutE) {}
    bool operator()(const Particle& p) { return (p.getEnergy() < cutE_); }
  };
  auto hadronSequence =
      make_select(EnergySwitch(55_GeV), urqmdCounted,
                  make_select([](auto const& p) { return is_nucleus(p.getPID()); },
                              sibyllNucCounted, sibyllCounted));
  auto decaySequence = make_sequence(decayPythia, decaySibyll);

ralfulrich's avatar
ralfulrich committed
  // directory for outputs
  string const labHist_file = "inthist_lab_verticalEAS.npz";
  string const cMSHist_file = "inthist_cms_verticalEAS.npz";
  string const longprof_file = "longprof_verticalEAS.txt";
ralfulrich's avatar
ralfulrich committed
  // setup particle stack, and add primary particle
  setup::Stack stack;
  stack.clear();

ralfulrich's avatar
ralfulrich committed
  stack.addParticle(std::make_tuple(beamCode, plab, injectionPos, 0_ns));
ralfulrich's avatar
ralfulrich committed
  BetheBlochPDG emContinuous(showerAxis);
ralfulrich's avatar
ralfulrich committed
  TrackWriter trackWriter;
  output.add("tracks", trackWriter); // register TrackWriter

  LongitudinalProfile longprof{showerAxis};

  Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.}));
  ObservationPlane<setup::Tracking, NoOutput> observationLevel(
      obsPlane, DirectionVector(rootCS, {1., 0., 0.}));
ralfulrich's avatar
ralfulrich committed
  // register the observation plane with the output
  output.add("particles", observationLevel);

  auto sequence = make_sequence(stackInspect, hadronSequence, decaySequence, emContinuous,
                                cut, trackWriter, observationLevel, longprof);

  // define air shower object, run simulation
  setup::Tracking tracking;
  Cascade EAS(env, tracking, sequence, output, stack);
  output.startOfShower();
ralfulrich's avatar
ralfulrich committed
  EAS.run();
  output.endOfShower();
ralfulrich's avatar
ralfulrich committed

  cut.showResults();
  // emContinuous.showResults();
  observationLevel.showResults();
  const HEPEnergyType Efinal = cut.getCutEnergy() + cut.getInvEnergy() +
                               cut.getEmEnergy() + // emContinuous.getEnergyLost() +
                               observationLevel.getEnergyGround();
  cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
       << "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
  observationLevel.reset();
  cut.reset();
  // emContinuous.reset();

  auto const hists = sibyllCounted.getHistogram() + sibyllNucCounted.getHistogram() +
                     urqmdCounted.getHistogram();

  save_hist(hists.labHist(), labHist_file, true);
  save_hist(hists.CMSHist(), cMSHist_file, true);
  longprof.save(longprof_file);

  output.endOfLibrary();