Newer
Older
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
/* clang-format off */
// InteractionCounter used boost/histogram, which
// fails if boost/type_traits have been included before. Thus, we have
// to include it first...
#include <corsika/framework/process/InteractionCounter.hpp>
#include <corsika/framework/geometry/Plane.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/utility/SaveBoostHistogram.hpp>
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/process/SwitchProcessSequence.hpp>
#include <corsika/framework/process/InteractionCounter.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/geometry/PhysicalGeometry.hpp>
#include <corsika/output/OutputManager.hpp>
#include <corsika/output/NoOutput.hpp>
#include <corsika/media/Environment.hpp>
#include <corsika/media/FlatExponential.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMagneticFieldModel.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/media/ShowerAxis.hpp>
#include <corsika/modules/BetheBlochPDG.hpp>
#include <corsika/modules/LongitudinalProfile.hpp>
#include <corsika/modules/ObservationPlane.hpp>
#include <corsika/modules/StackInspector.hpp>
#include <corsika/modules/TrackWriter.hpp>
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/Pythia8.hpp>
#include <corsika/modules/Sibyll.hpp>
#include <corsika/modules/UrQMD.hpp>
#include <corsika/modules/Epos.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <iomanip>
#include <iostream>
#include <limits>
The .../Random.hpppp implement the hooks of external modules to the C8 random
number generator. It has to occur excatly ONCE per linked
executable. If you include the header below multiple times and
link this togehter, it will fail.
*/
#include <corsika/modules/Random.hpp>
void registerRandomStreams(int seed) {
RNGManager<>::getInstance().registerRandomStream("cascade");
RNGManager<>::getInstance().registerRandomStream("sibyll");
RNGManager<>::getInstance().registerRandomStream("pythia");
RNGManager<>::getInstance().registerRandomStream("urqmd");
RNGManager<>::getInstance().registerRandomStream("proposal");
if (seed == 0) {
std::random_device rd;
seed = rd();
cout << "new random seed (auto) " << seed << endl;
}
RNGManager<>::getInstance().setSeed(seed);
using MyExtraEnv = MediumPropertyModel<UniformMagneticField<T>>;
// argv : 1.number of nucleons, 2.number of protons,
// 3.total energy in GeV, 4.number of showers,
// 5.seed (0 by default to generate random values for all)
if (argc < 4) {
std::cerr << "usage: vertical_EAS <A> <Z> <energy/GeV> [seed] \n"
" if A=0, Z is interpreted as PDG code \n"
" if no seed is given, a random seed is chosen \n"
<< std::endl;
CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
Point const center{rootCS, 0_m, 0_m, 0_m};
// build a Linsley US Standard atmosphere into `env`
create_5layer_atmosphere<setup::EnvironmentInterface, MyExtraEnv>(
env, AtmosphereId::LinsleyUSStd, center, Medium::AirDry1Atm,
MagneticFieldVector{rootCS, 0_T, 50_uT, 0_T});
// pre-setup particle stack
unsigned short const A = std::stoi(std::string(argv[1]));
Code beamCode;
unsigned short Z = 0;
if (A > 0) {
Z = std::stoi(std::string(argv[2]));
if (A == 1 && Z == 0)
beamCode = Code::Neutron;
else if (A == 1 && Z == 1)
beamCode = Code::Proton;
else
beamCode = get_nucleus_code(A, Z);
} else {
int pdg = std::stoi(std::string(argv[2]));
beamCode = convert_from_PDG(PDGCode(pdg));
}
HEPEnergyType const E0 = 1_GeV * std::stof(std::string(argv[3]));
double theta = 0.;
double phi = 180.;
auto const thetaRad = theta / 180. * constants::pi;
auto const phiRad = phi / 180. * constants::pi;
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const [px, py, pz] = momentumComponents(thetaRad, phiRad, P0);
auto plab = MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << ",phi=" << phi << endl;
cout << "input momentum: " << plab.getComponents() / 1_GeV
<< ", norm = " << plab.getNorm() << endl;
auto const observationHeight = 0_km + constants::EarthRadius::Mean;
auto const injectionHeight = 111.75_km + constants::EarthRadius::Mean;
auto const t = -observationHeight * cos(thetaRad) +
sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) +
static_pow<2>(injectionHeight));
Point const showerCore{rootCS, 0_m, 0_m, observationHeight};
Point const injectionPos =
showerCore + DirectionVector{rootCS,
{-sin(thetaRad) * cos(phiRad),
-sin(thetaRad) * sin(phiRad), cos(thetaRad)}} *
t;
std::cout << "point of injection: " << injectionPos.getCoordinates() << std::endl;
// we make the axis much longer than the inj-core distance since the
// profile will go beyond the core, depending on zenith angle
std::cout << "shower axis length: " << (showerCore - injectionPos).getNorm() * 1.5
<< std::endl;
ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.5, env, false,
1000};
// create the output manager that we then register outputs with
OutputManager output("vertical_EAS_outputs");
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// setup processes, decays and interactions
corsika::sibyll::Interaction sibyll;
InteractionCounter sibyllCounted(sibyll);
corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
InteractionCounter sibyllNucCounted(sibyllNuc);
corsika::pythia8::Decay decayPythia;
// use sibyll decay routine for decays of particles unknown to pythia
corsika::sibyll::Decay decaySibyll{{
Code::N1440Plus,
Code::N1440MinusBar,
Code::N1440_0,
Code::N1440_0Bar,
Code::N1710Plus,
Code::N1710MinusBar,
Code::N1710_0,
Code::N1710_0Bar,
Code::Pi1300Plus,
Code::Pi1300Minus,
Code::Pi1300_0,
Code::KStar0_1430_0,
Code::KStar0_1430_0Bar,
Code::KStar0_1430_Plus,
Code::KStar0_1430_MinusBar,
}};
decaySibyll.printDecayConfig();
ParticleCut cut{60_GeV, 60_GeV, 60_GeV, 60_GeV, true};
corsika::urqmd::UrQMD urqmd;
InteractionCounter urqmdCounted{urqmd};
StackInspector<setup::Stack> stackInspect(50000, false, E0);
// assemble all processes into an ordered process list
struct EnergySwitch {
HEPEnergyType cutE_;
EnergySwitch(HEPEnergyType cutE)
: cutE_(cutE) {}
bool operator()(const Particle& p) { return (p.getEnergy() < cutE_); }
};
auto hadronSequence =
make_select(EnergySwitch(55_GeV), urqmdCounted,
make_select([](auto const& p) { return is_nucleus(p.getPID()); },
sibyllNucCounted, sibyllCounted));
auto decaySequence = make_sequence(decayPythia, decaySibyll);
// directory for outputs
string const labHist_file = "inthist_lab_verticalEAS.npz";
string const cMSHist_file = "inthist_cms_verticalEAS.npz";
string const longprof_file = "longprof_verticalEAS.txt";
// setup particle stack, and add primary particle
setup::Stack stack;
stack.clear();
stack.addParticle(std::make_tuple(beamCode, plab, injectionPos, 0_ns));
TrackWriter trackWriter;
output.add("tracks", trackWriter); // register TrackWriter
LongitudinalProfile longprof{showerAxis};
Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.}));
ObservationPlane<setup::Tracking, NoOutput> observationLevel(
obsPlane, DirectionVector(rootCS, {1., 0., 0.}));
// register the observation plane with the output
output.add("particles", observationLevel);
auto sequence = make_sequence(stackInspect, hadronSequence, decaySequence, emContinuous,
cut, trackWriter, observationLevel, longprof);
// define air shower object, run simulation
setup::Tracking tracking;
Cascade EAS(env, tracking, sequence, output, stack);
cut.showResults();
// emContinuous.showResults();
observationLevel.showResults();
const HEPEnergyType Efinal = cut.getCutEnergy() + cut.getInvEnergy() +
cut.getEmEnergy() + // emContinuous.getEnergyLost() +
observationLevel.getEnergyGround();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
observationLevel.reset();
cut.reset();
// emContinuous.reset();
auto const hists = sibyllCounted.getHistogram() + sibyllNucCounted.getHistogram() +
urqmdCounted.getHistogram();
save_hist(hists.labHist(), labHist_file, true);
save_hist(hists.CMSHist(), cMSHist_file, true);
longprof.save(longprof_file);
output.endOfLibrary();