Newer
Older
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
/* clang-format off */
// InteractionCounter used boost/histogram, which
// fails if boost/type_traits have been included before. Thus, we have
// to include it first...
#include <corsika/framework/process/InteractionCounter.hpp>
#include <corsika/framework/geometry/Plane.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/utility/SaveBoostHistogram.hpp>
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/process/SwitchProcessSequence.hpp>
#include <corsika/framework/process/InteractionCounter.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/geometry/PhysicalGeometry.hpp>
#include <corsika/media/Environment.hpp>
#include <corsika/media/FlatExponential.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMagneticFieldModel.hpp>
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/media/ShowerAxis.hpp>
#include <corsika/media/SlidingPlanarExponential.hpp>
#include <corsika/modules/BetheBlochPDG.hpp>
#include <corsika/modules/LongitudinalProfile.hpp>
#include <corsika/modules/ObservationPlane.hpp>
#include <corsika/modules/OnShellCheck.hpp>
#include <corsika/modules/StackInspector.hpp>
#include <corsika/modules/TrackWriter.hpp>
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/Pythia8.hpp>
#include <corsika/modules/Sibyll.hpp>
#include <corsika/modules/UrQMD.hpp>
#include <corsika/modules/QGSJetII.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <iomanip>
#include <iostream>
#include <limits>
The .../Random.hpppp implement the hooks of external modules to the C8 random
number generator. It has to occur excatly ONCE per linked
executable. If you include the header below multiple times and
link this togehter, it will fail.
*/
#include <corsika/modules/sibyll/Random.hpp>
#include <corsika/modules/urqmd/Random.hpp>
#include <corsika/modules/qgsjetII/Random.hpp>
void registerRandomStreams(const int seed) {
RNGManager::getInstance().registerRandomStream("cascade");
RNGManager::getInstance().registerRandomStream("qgsjet");
RNGManager::getInstance().registerRandomStream("sibyll");
RNGManager::getInstance().registerRandomStream("pythia");
RNGManager::getInstance().registerRandomStream("urqmd");
RNGManager::getInstance().registerRandomStream("proposal");
using MyExtraEnv = MediumPropertyModel<UniformMagneticField<T>>;
// argv : 1.number of nucleons, 2.number of protons,
// 3.total energy in GeV, 4.number of showers,
// 5.seed (0 by default to generate random values for all)
corsika_logger->set_pattern("[%n:%^%-8l%$] %s:%#: %v");
logging::set_level(logging::level::info);
std::cerr << "usage: vertical_EAS <A> <Z> <energy/GeV> <Nevt> [seed] \n"
" if A=0, Z is interpreted as PDG code \n"
" if no seed is given, a random seed is chosen \n"
<< std::endl;
int number_showers = std::stoi(std::string(argv[4]));
if (argc > 5) { seed = std::stoi(std::string(argv[5])); }
CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
Point const center{rootCS, 0_m, 0_m, 0_m};
auto builder = make_layered_spherical_atmosphere_builder<
setup::EnvironmentInterface, MyExtraEnv>::create(center,
constants::EarthRadius::Mean,
Medium::AirDry1Atm,
MagneticFieldVector{rootCS, 0_T,
{0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now
builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km);
builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km);
builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km);
builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km);
builder.addLinearLayer(1e9_cm, 112.8_km + constants::EarthRadius::Mean);
CORSIKA_LOG_DEBUG(
"environment setup: universe={}, layer1={}, layer2={}, layer3={}, layer4={}, "
"layer5={}",
fmt::ptr(env.getUniverse()->getContainingNode(
Point(rootCS, {constants::EarthRadius::Mean + 130_km, 0_m, 0_m}))),
fmt::ptr(env.getUniverse()->getContainingNode(
Point(rootCS, {constants::EarthRadius::Mean + 110_km, 0_m, 0_m}))),
fmt::ptr(env.getUniverse()->getContainingNode(
Point(rootCS, {constants::EarthRadius::Mean + 50_km, 0_m, 0_m}))),
fmt::ptr(env.getUniverse()->getContainingNode(
Point(rootCS, {constants::EarthRadius::Mean + 20_km, 0_m, 0_m}))),
fmt::ptr(env.getUniverse()->getContainingNode(
Point(rootCS, {constants::EarthRadius::Mean + 5_km, 0_m, 0_m}))),
fmt::ptr(env.getUniverse()->getContainingNode(
Point(rootCS, {constants::EarthRadius::Mean + 2_km, 0_m, 0_m}))));
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
// pre-setup particle stack
unsigned short const A = std::stoi(std::string(argv[1]));
Code beamCode;
HEPEnergyType mass;
unsigned short Z = 0;
if (A > 0) {
beamCode = Code::Nucleus;
Z = std::stoi(std::string(argv[2]));
mass = get_nucleus_mass(A, Z);
} else {
int pdg = std::stoi(std::string(argv[2]));
beamCode = convert_from_PDG(PDGCode(pdg));
mass = get_mass(beamCode);
}
HEPEnergyType const E0 = 1_GeV * std::stof(std::string(argv[3]));
double theta = 20.;
double phi = 180.;
auto const thetaRad = theta / 180. * M_PI;
auto const phiRad = phi / 180. * M_PI;
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const [px, py, pz] = momentumComponents(thetaRad, phiRad, P0);
auto plab = MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << ",phi=" << phi << endl;
cout << "input momentum: " << plab.getComponents() / 1_GeV
<< ", norm = " << plab.getNorm() << endl;
auto const observationHeight = 0_km + builder.getEarthRadius();
auto const injectionHeight = 111.75_km + builder.getEarthRadius();
auto const t = -observationHeight * cos(thetaRad) +
sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) +
static_pow<2>(injectionHeight));
Point const showerCore{rootCS, 0_m, 0_m, observationHeight};
Point const injectionPos =
showerCore + DirectionVector{rootCS,
{-sin(thetaRad) * cos(phiRad),
-sin(thetaRad) * sin(phiRad), cos(thetaRad)}} *
t;
std::cout << "point of injection: " << injectionPos.getCoordinates() << std::endl;
// we make the axis much longer than the inj-core distance since the
// profile will go beyond the core, depending on zenith angle
std::cout << "shower axis length: " << (showerCore - injectionPos).getNorm() * 1.5
<< std::endl;
ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.5, env};
// setup processes, decays and interactions
// corsika::qgsjetII::Interaction qgsjet;
corsika::sibyll::Interaction sibyll;
InteractionCounter sibyllCounted(sibyll);
corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
InteractionCounter sibyllNucCounted(sibyllNuc);
corsika::pythia8::Decay decayPythia;
// use sibyll decay routine for decays of particles unknown to pythia
corsika::sibyll::Decay decaySibyll{{
Code::N1440Plus,
Code::N1440MinusBar,
Code::N1440_0,
Code::N1440_0Bar,
Code::N1710Plus,
Code::N1710MinusBar,
Code::N1710_0,
Code::N1710_0Bar,
Code::Pi1300Plus,
Code::Pi1300Minus,
Code::Pi1300_0,
Code::KStar0_1430_0,
Code::KStar0_1430_0Bar,
Code::KStar0_1430_Plus,
Code::KStar0_1430_MinusBar,
}};
decaySibyll.printDecayConfig();
ParticleCut cut{60_GeV, 60_GeV, 60_GeV, 60_GeV, true};
corsika::proposal::Interaction emCascade(env);
corsika::proposal::ContinuousProcess emContinuous(env);
InteractionCounter emCascadeCounted(emCascade);
OnShellCheck reset_particle_mass(1.e-3, 1.e-1, false);
LongitudinalProfile longprof{showerAxis};
Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.}));
corsika::urqmd::UrQMD urqmd;
InteractionCounter urqmdCounted{urqmd};
StackInspector<setup::Stack> stackInspect(50000, false, E0);
// assemble all processes into an ordered process list
struct EnergySwitch {
HEPEnergyType cutE_;
EnergySwitch(HEPEnergyType cutE)
: cutE_(cutE) {}
bool operator()(const Particle& p) { return (p.getEnergy() < cutE_); }
};
auto hadronSequence = make_select(EnergySwitch(55_GeV), urqmdCounted,
make_sequence(sibyllNucCounted, sibyllCounted));
auto decaySequence = make_sequence(decayPythia, decaySibyll);
for (int i_shower = 1; i_shower < number_showers + 1; i_shower++) {
string const labHist_file = "inthist_lab_verticalEAS_" + to_string(i_shower) + ".npz";
string const cMSHist_file = "inthist_cms_verticalEAS_" + to_string(i_shower) + ".npz";
string const longprof_file = "longprof_verticalEAS_" + to_string(i_shower) + ".txt";
string const tracks_file = "tracks_" + to_string(i_shower) + ".dat";
string const particles_file = "particles_" + to_string(i_shower) + ".dat";
std::cout << "Shower " << i_shower << "/" << number_showers << std::endl;
// setup particle stack, and add primary particle
setup::Stack stack;
stack.clear();
if (A > 1) {
stack.addParticle(std::make_tuple(beamCode, E0, plab, injectionPos, 0_ns, A, Z));
} else {
if (A == 1) {
if (Z == 1) {
stack.addParticle(std::make_tuple(Code::Proton, E0, plab, injectionPos, 0_ns));
} else if (Z == 0) {
stack.addParticle(std::make_tuple(Code::Neutron, E0, plab, injectionPos, 0_ns));
} else {
std::cerr << "illegal parameters" << std::endl;
return EXIT_FAILURE;
}
stack.addParticle(std::make_tuple(beamCode, E0, plab, injectionPos, 0_ns));
TrackWriter trackWriter(tracks_file);
ObservationPlane observationLevel(obsPlane, DirectionVector(rootCS, {1., 0., 0.}),
particles_file);
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
auto sequence =
make_sequence(stackInspect, hadronSequence, reset_particle_mass, decaySequence,
emContinuous, cut, trackWriter, observationLevel, longprof);
// define air shower object, run simulation
setup::Tracking tracking;
Cascade EAS(env, tracking, sequence, stack);
// to fix the point of first interaction, uncomment the following two lines:
// EAS.forceInteraction();
EAS.run();
cut.showResults();
emContinuous.showResults();
observationLevel.showResults();
const HEPEnergyType Efinal = cut.getCutEnergy() + cut.getInvEnergy() +
cut.getEmEnergy() + emContinuous.getEnergyLost() +
observationLevel.getEnergyGround();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
observationLevel.reset();
cut.reset();
emContinuous.reset();
auto const hists = sibyllCounted.getHistogram() + sibyllNucCounted.getHistogram() +
urqmdCounted.getHistogram();
save_hist(hists.labHist(), labHist_file, true);
save_hist(hists.CMSHist(), cMSHist_file, true);
longprof.save(longprof_file);