IAP GITLAB

Skip to content
Snippets Groups Projects
vertical_EAS.cpp 13.2 KiB
Newer Older
ralfulrich's avatar
ralfulrich committed
/*
 * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
ralfulrich's avatar
ralfulrich committed
 *
 * This software is distributed under the terms of the GNU General Public
 * Licence version 3 (GPL Version 3). See file LICENSE for a full version of
 * the license.
 */

/* clang-format off */
// InteractionCounter used boost/histogram, which
// fails if boost/type_traits have been included before. Thus, we have
// to include it first...
ralfulrich's avatar
ralfulrich committed
#include <corsika/framework/process/InteractionCounter.hpp>
/* clang-format on */
ralfulrich's avatar
ralfulrich committed
#include <corsika/framework/geometry/Plane.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/framework/core/Logging.hpp>
#include <corsika/framework/utility/SaveBoostHistogram.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/process/SwitchProcessSequence.hpp>
#include <corsika/framework/process/InteractionCounter.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/geometry/PhysicalGeometry.hpp>

#include <corsika/media/Environment.hpp>
#include <corsika/media/FlatExponential.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMagneticFieldModel.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/media/ShowerAxis.hpp>
#include <corsika/media/SlidingPlanarExponential.hpp>
ralfulrich's avatar
ralfulrich committed

#include <corsika/modules/BetheBlochPDG.hpp>
#include <corsika/modules/LongitudinalProfile.hpp>
#include <corsika/modules/ObservationPlane.hpp>
#include <corsika/modules/OnShellCheck.hpp>
#include <corsika/modules/StackInspector.hpp>
#include <corsika/modules/TrackWriter.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/Pythia8.hpp>
#include <corsika/modules/Sibyll.hpp>
#include <corsika/modules/UrQMD.hpp>
ralfulrich's avatar
ralfulrich committed
#include <corsika/modules/PROPOSAL.hpp>
#include <corsika/modules/QGSJetII.hpp>
ralfulrich's avatar
ralfulrich committed

#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
ralfulrich's avatar
ralfulrich committed

#include <iomanip>
#include <iostream>
#include <limits>
#include <string>
ralfulrich's avatar
ralfulrich committed

ralfulrich's avatar
ralfulrich committed
/*
  NOTE, WARNING, ATTENTION
ralfulrich's avatar
ralfulrich committed
  The .../Random.hpppp implement the hooks of external modules to the C8 random
  number generator. It has to occur excatly ONCE per linked
  executable. If you include the header below multiple times and
  link this togehter, it will fail.
 */
#include <corsika/modules/sibyll/Random.hpp>
#include <corsika/modules/urqmd/Random.hpp>
#include <corsika/modules/qgsjetII/Random.hpp>
ralfulrich's avatar
ralfulrich committed

using namespace corsika;
ralfulrich's avatar
ralfulrich committed
using namespace std;
ralfulrich's avatar
ralfulrich committed
using Particle = setup::Stack::particle_type;

void registerRandomStreams(const int seed) {
ralfulrich's avatar
ralfulrich committed
  RNGManager::getInstance().registerRandomStream("cascade");
  RNGManager::getInstance().registerRandomStream("qgsjet");
  RNGManager::getInstance().registerRandomStream("sibyll");
  RNGManager::getInstance().registerRandomStream("pythia");
  RNGManager::getInstance().registerRandomStream("urqmd");
  RNGManager::getInstance().registerRandomStream("proposal");

  if (seed == 0)
ralfulrich's avatar
ralfulrich committed
    RNGManager::getInstance().seedAll();
ralfulrich's avatar
ralfulrich committed
    RNGManager::getInstance().seedAll(seed);
ralfulrich's avatar
ralfulrich committed

template <typename T>
ralfulrich's avatar
ralfulrich committed
using MyExtraEnv = MediumPropertyModel<UniformMagneticField<T>>;
ralfulrich's avatar
ralfulrich committed

// argv : 1.number of nucleons, 2.number of protons,
//        3.total energy in GeV, 4.number of showers,
//        5.seed (0 by default to generate random values for all)
int main(int argc, char** argv) {
ralfulrich's avatar
ralfulrich committed

Ralf Ulrich's avatar
Ralf Ulrich committed
  corsika_logger->set_pattern("[%n:%^%-8l%$] %s:%#: %v");
  logging::set_level(logging::level::info);
ralfulrich's avatar
ralfulrich committed
  CORSIKA_LOG_INFO("vertical_EAS");
ralfulrich's avatar
ralfulrich committed
  if (argc < 5) {
    std::cerr << "usage: vertical_EAS <A> <Z> <energy/GeV> <Nevt> [seed] \n"
                 "       if A=0, Z is interpreted as PDG code \n"
                 "       if no seed is given, a random seed is chosen \n"
              << std::endl;
ralfulrich's avatar
ralfulrich committed
  feenableexcept(FE_INVALID);
  int number_showers = std::stoi(std::string(argv[4]));
  if (argc > 5) { seed = std::stoi(std::string(argv[5])); }
ralfulrich's avatar
ralfulrich committed
  // initialize random number sequence(s)
  registerRandomStreams(seed);
ralfulrich's avatar
ralfulrich committed

  // setup environment, geometry
  using EnvType = setup::Environment;
ralfulrich's avatar
ralfulrich committed
  EnvType env;
ralfulrich's avatar
ralfulrich committed
  CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
  Point const center{rootCS, 0_m, 0_m, 0_m};
ralfulrich's avatar
ralfulrich committed
  auto builder = make_layered_spherical_atmosphere_builder<
      setup::EnvironmentInterface, MyExtraEnv>::create(center,
                                                       constants::EarthRadius::Mean,
                                                       Medium::AirDry1Atm,
                                                       MagneticFieldVector{rootCS, 0_T,
                                                                           50_uT, 0_T});
ralfulrich's avatar
ralfulrich committed
  builder.setNuclearComposition(
ralfulrich's avatar
ralfulrich committed
      {{Code::Nitrogen, Code::Oxygen},
ralfulrich's avatar
ralfulrich committed
       {0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now

  builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km);
  builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km);
  builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km);
  builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km);
ralfulrich's avatar
ralfulrich committed
  builder.addLinearLayer(1e9_cm, 112.8_km + constants::EarthRadius::Mean);
ralfulrich's avatar
ralfulrich committed
  builder.assemble(env);

  CORSIKA_LOG_DEBUG(
      "environment setup: universe={}, layer1={}, layer2={}, layer3={}, layer4={}, "
      "layer5={}",
      fmt::ptr(env.getUniverse()->getContainingNode(
          Point(rootCS, {constants::EarthRadius::Mean + 130_km, 0_m, 0_m}))),
      fmt::ptr(env.getUniverse()->getContainingNode(
          Point(rootCS, {constants::EarthRadius::Mean + 110_km, 0_m, 0_m}))),
      fmt::ptr(env.getUniverse()->getContainingNode(
          Point(rootCS, {constants::EarthRadius::Mean + 50_km, 0_m, 0_m}))),
      fmt::ptr(env.getUniverse()->getContainingNode(
          Point(rootCS, {constants::EarthRadius::Mean + 20_km, 0_m, 0_m}))),
      fmt::ptr(env.getUniverse()->getContainingNode(
          Point(rootCS, {constants::EarthRadius::Mean + 5_km, 0_m, 0_m}))),
      fmt::ptr(env.getUniverse()->getContainingNode(
          Point(rootCS, {constants::EarthRadius::Mean + 2_km, 0_m, 0_m}))));

  // pre-setup particle stack
  unsigned short const A = std::stoi(std::string(argv[1]));
  Code beamCode;
  HEPEnergyType mass;
  unsigned short Z = 0;
  if (A > 0) {
    beamCode = Code::Nucleus;
    Z = std::stoi(std::string(argv[2]));
    mass = get_nucleus_mass(A, Z);
  } else {
    int pdg = std::stoi(std::string(argv[2]));
    beamCode = convert_from_PDG(PDGCode(pdg));
    mass = get_mass(beamCode);
  }
  HEPEnergyType const E0 = 1_GeV * std::stof(std::string(argv[3]));
  double theta = 20.;
  double phi = 180.;
  auto const thetaRad = theta / 180. * M_PI;
  auto const phiRad = phi / 180. * M_PI;

  auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
    return sqrt((Elab - m) * (Elab + m));
  };
  HEPMomentumType P0 = elab2plab(E0, mass);
  auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
    return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
                           -ptot * cos(theta));
  };

  auto const [px, py, pz] = momentumComponents(thetaRad, phiRad, P0);
  auto plab = MomentumVector(rootCS, {px, py, pz});
  cout << "input particle: " << beamCode << endl;
  cout << "input angles: theta=" << theta << ",phi=" << phi << endl;
  cout << "input momentum: " << plab.getComponents() / 1_GeV
       << ", norm = " << plab.getNorm() << endl;

  auto const observationHeight = 0_km + builder.getEarthRadius();
  auto const injectionHeight = 111.75_km + builder.getEarthRadius();
  auto const t = -observationHeight * cos(thetaRad) +
                 sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) +
                      static_pow<2>(injectionHeight));
  Point const showerCore{rootCS, 0_m, 0_m, observationHeight};
  Point const injectionPos =
      showerCore + DirectionVector{rootCS,
                                   {-sin(thetaRad) * cos(phiRad),
                                    -sin(thetaRad) * sin(phiRad), cos(thetaRad)}} *
                       t;

  std::cout << "point of injection: " << injectionPos.getCoordinates() << std::endl;

  // we make the axis much longer than the inj-core distance since the
  // profile will go beyond the core, depending on zenith angle
  std::cout << "shower axis length: " << (showerCore - injectionPos).getNorm() * 1.5
            << std::endl;

  ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.5, env};

  // setup processes, decays and interactions

  // corsika::qgsjetII::Interaction qgsjet;
  corsika::sibyll::Interaction sibyll;
  InteractionCounter sibyllCounted(sibyll);

  corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
  InteractionCounter sibyllNucCounted(sibyllNuc);

  corsika::pythia8::Decay decayPythia;

  // use sibyll decay routine for decays of particles unknown to pythia
  corsika::sibyll::Decay decaySibyll{{
      Code::N1440Plus,
      Code::N1440MinusBar,
      Code::N1440_0,
      Code::N1440_0Bar,
      Code::N1710Plus,
      Code::N1710MinusBar,
      Code::N1710_0,
      Code::N1710_0Bar,

      Code::Pi1300Plus,
      Code::Pi1300Minus,
      Code::Pi1300_0,

      Code::KStar0_1430_0,
      Code::KStar0_1430_0Bar,
      Code::KStar0_1430_Plus,
      Code::KStar0_1430_MinusBar,
  }};

  decaySibyll.printDecayConfig();

  ParticleCut cut{60_GeV, 60_GeV, 60_GeV, 60_GeV, true};
  corsika::proposal::Interaction emCascade(env);
  corsika::proposal::ContinuousProcess emContinuous(env);
  InteractionCounter emCascadeCounted(emCascade);

  OnShellCheck reset_particle_mass(1.e-3, 1.e-1, false);

  LongitudinalProfile longprof{showerAxis};

  Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.}));

  corsika::urqmd::UrQMD urqmd;
  InteractionCounter urqmdCounted{urqmd};
  StackInspector<setup::Stack> stackInspect(50000, false, E0);

  // assemble all processes into an ordered process list
  struct EnergySwitch {
    HEPEnergyType cutE_;
    EnergySwitch(HEPEnergyType cutE)
        : cutE_(cutE) {}
    bool operator()(const Particle& p) { return (p.getEnergy() < cutE_); }
  };
  auto hadronSequence = make_select(EnergySwitch(55_GeV), urqmdCounted,
                                    make_sequence(sibyllNucCounted, sibyllCounted));
  auto decaySequence = make_sequence(decayPythia, decaySibyll);

  for (int i_shower = 1; i_shower < number_showers + 1; i_shower++) {

    // directory for outputs
    string const labHist_file = "inthist_lab_verticalEAS_" + to_string(i_shower) + ".npz";
    string const cMSHist_file = "inthist_cms_verticalEAS_" + to_string(i_shower) + ".npz";
    string const longprof_file = "longprof_verticalEAS_" + to_string(i_shower) + ".txt";
    string const tracks_file = "tracks_" + to_string(i_shower) + ".dat";
    string const particles_file = "particles_" + to_string(i_shower) + ".dat";

    std::cout << std::endl;
    std::cout << "Shower " << i_shower << "/" << number_showers << std::endl;

    // setup particle stack, and add primary particle
    setup::Stack stack;
    stack.clear();

    if (A > 1) {
      stack.addParticle(std::make_tuple(beamCode, E0, plab, injectionPos, 0_ns, A, Z));

    } else {
      if (A == 1) {
        if (Z == 1) {
          stack.addParticle(std::make_tuple(Code::Proton, E0, plab, injectionPos, 0_ns));
        } else if (Z == 0) {
          stack.addParticle(std::make_tuple(Code::Neutron, E0, plab, injectionPos, 0_ns));
        } else {
          std::cerr << "illegal parameters" << std::endl;
          return EXIT_FAILURE;
        }
      } else {
        stack.addParticle(std::make_tuple(beamCode, E0, plab, injectionPos, 0_ns));
    TrackWriter trackWriter(tracks_file);
    ObservationPlane observationLevel(obsPlane, DirectionVector(rootCS, {1., 0., 0.}),
    auto sequence =
        make_sequence(stackInspect, hadronSequence, reset_particle_mass, decaySequence,
                      emContinuous, cut, trackWriter, observationLevel, longprof);

    // define air shower object, run simulation
    setup::Tracking tracking;
    Cascade EAS(env, tracking, sequence, stack);

    // to fix the point of first interaction, uncomment the following two lines:
    //  EAS.forceInteraction();

    EAS.run();

    cut.showResults();
    emContinuous.showResults();
    observationLevel.showResults();
    const HEPEnergyType Efinal = cut.getCutEnergy() + cut.getInvEnergy() +
                                 cut.getEmEnergy() + emContinuous.getEnergyLost() +
                                 observationLevel.getEnergyGround();
    cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
         << "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
    observationLevel.reset();
    cut.reset();
    emContinuous.reset();

    auto const hists = sibyllCounted.getHistogram() + sibyllNucCounted.getHistogram() +
                       urqmdCounted.getHistogram();

    save_hist(hists.labHist(), labHist_file, true);
    save_hist(hists.CMSHist(), cMSHist_file, true);
    longprof.save(longprof_file);
ralfulrich's avatar
ralfulrich committed
}