Newer
Older
/*
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/geometry/Plane.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/geometry/PhysicalGeometry.hpp>
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/framework/process/InteractionCounter.hpp>
#include <corsika/media/Environment.hpp>
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/ShowerAxis.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/modules/LongitudinalProfile.hpp>
#include <corsika/modules/ObservationPlane.hpp>
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/TrackWriter.hpp>
#include <corsika/modules/PROPOSAL.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <iomanip>
#include <iostream>
#include <limits>
#include <string>
#include <typeinfo>
The .../Random.hpppp implement the hooks of external modules to the C8 random
number generator. It has to occur excatly ONCE per linked
executable. If you include the header below multiple times and
link this togehter, it will fail.
*/
#include <corsika/modules/sibyll/Random.hpp>
#include <corsika/modules/urqmd/Random.hpp>
using namespace corsika;
RNGManager::getInstance().registerRandomStream("cascade");
RNGManager::getInstance().registerRandomStream("proposal");
RNGManager::getInstance().seedAll();
using MyExtraEnv = MediumPropertyModel<UniformMagneticField<T>>;
corsika_logger->set_pattern("[%n:%^%-8l%$] custom pattern: %v");
if (argc != 2) {
std::cerr << "usage: em_shower <energy/GeV>" << std::endl;
return 1;
}
feenableexcept(FE_INVALID);
// initialize random number sequence(s)
registerRandomStreams();
// setup environment, geometry
using EnvType = setup::Environment;
EnvType env;
CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
auto builder = make_layered_spherical_atmosphere_builder<
setup::EnvironmentInterface, MyExtraEnv>::create(center,
constants::EarthRadius::Mean,
Medium::AirDry1Atm,
{0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now
builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km);
builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km);
builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km);
builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km);
builder.addLinearLayer(1e9_cm, 112.8_km);
builder.assemble(env);
// setup particle stack, and add primary particle
setup::Stack stack;
const HEPEnergyType E0 = 1_GeV * std::stof(std::string(argv[1]));
double theta = 0.;
auto const thetaRad = theta / 180. * M_PI;
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double thetaRad, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(thetaRad), 0_eV, -ptot * cos(thetaRad));
};
auto const [px, py, pz] = momentumComponents(thetaRad, P0);
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << endl;
cout << "input momentum: " << plab.getComponents() / 1_GeV
<< ", norm = " << plab.getNorm() << endl;
auto const observationHeight = 1.4_km + builder.getEarthRadius();
auto const injectionHeight = 112.75_km + builder.getEarthRadius();
auto const t = -observationHeight * cos(thetaRad) +
sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) +
static_pow<2>(injectionHeight));
Point const showerCore{rootCS, 0_m, 0_m, observationHeight};
Point const injectionPos =
showerCore + DirectionVector{rootCS, {-sin(thetaRad), 0, cos(thetaRad)}} * t;
std::cout << "point of injection: " << injectionPos.getCoordinates() << std::endl;
stack.addParticle(std::make_tuple(beamCode, E0, plab, injectionPos, 0_ns));
std::cout << "shower axis length: " << (showerCore - injectionPos).getNorm() * 1.02
ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.02, env};
// setup processes, decays and interactions
// PROPOSAL processs proposal{...};
ParticleCut cut(10_GeV, false, true);
corsika::proposal::Interaction proposal(env, cut.getECut());
corsika::proposal::ContinuousProcess em_continuous(env, cut.getECut());
InteractionCounter proposalCounted(proposal);
// long. profile; columns for gamma, e+, e- still need to be added
Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.}));
ObservationPlane observationLevel(obsPlane, DirectionVector(rootCS, {1., 0., 0.}),
"particles.dat");
auto sequence = make_sequence(proposalCounted, em_continuous, longprof, cut,
observationLevel, trackWriter);
// to fix the point of first interaction, uncomment the following two lines:
observationLevel.showResults();
const HEPEnergyType Efinal = cut.getCutEnergy() + cut.getInvEnergy() +
cut.getEmEnergy() + em_continuous.getEnergyLost() +
observationLevel.getEnergyGround();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;