Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/*
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
/* clang-format off */
// InteractionCounter used boost/histogram, which
// fails if boost/type_traits have been included before. Thus, we have
// to include it first...
#include <corsika/framework/process/InteractionCounter.hpp>
/* clang-format on */
#include <corsika/framework/geometry/Plane.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/core/Logging.hpp>
#include <corsika/framework/utility/SaveBoostHistogram.hpp>
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/process/SwitchProcessSequence.hpp>
#include <corsika/framework/process/InteractionCounter.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/geometry/PhysicalGeometry.hpp>
#include <corsika/output/OutputManager.hpp>
#include <corsika/output/NoOutput.hpp>
#include <corsika/media/Environment.hpp>
#include <corsika/media/FlatExponential.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMagneticFieldModel.hpp>
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/media/ShowerAxis.hpp>
#include <corsika/media/SlidingPlanarExponential.hpp>
#include <corsika/modules/BetheBlochPDG.hpp>
#include <corsika/modules/LongitudinalProfile.hpp>
#include <corsika/modules/ObservationPlane.hpp>
#include <corsika/modules/OnShellCheck.hpp>
#include <corsika/modules/StackInspector.hpp>
#include <corsika/modules/TrackWriter.hpp>
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/Pythia8.hpp>
#include <corsika/modules/Sibyll.hpp>
#include <corsika/modules/UrQMD.hpp>
#include <corsika/modules/PROPOSAL.hpp>
#include <corsika/modules/QGSJetII.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <CLI/App.hpp>
#include <CLI/Formatter.hpp>
#include <CLI/Config.hpp>
#include <iomanip>
#include <iostream>
#include <limits>
#include <string>
/*
NOTE, WARNING, ATTENTION
The .../Random.hpp implement the hooks of external modules to the C8 random
number generator. It has to occur excatly ONCE per linked
executable. If you include the header below multiple times and
link this togehter, it will fail.
*/
#include <corsika/modules/Random.hpp>
using namespace corsika;
using namespace std;
using Particle = setup::Stack::particle_type;
typedef decltype(1 * pascal) PressureType;
typedef decltype(1 * degree_celsius) TemperatureType;
class MarsAtmModel {
public:
MarsAtmModel() = delete;
MarsAtmModel(PressureType a, InverseLengthType b, TemperatureType c,
decltype(1 * degree_celsius / 1_m) d)
: a_(a)
, b_(b)
, c_(c)
, d_(d) {}
MassDensityType operator()(LengthType height) const {
PressureType const pressure = a_ * exp(-b_ * height);
TemperatureType const temperature = -c_ - d_ * height + 273.1_K; // in K
constexpr decltype(square(1_m) / (square(1_s) * 1_K)) constant =
1000 * 0.1921 * square(1_m) / (square(1_s) * 1_K);
return pressure / (constant * temperature);
}
private:
PressureType a_;
InverseLengthType b_;
TemperatureType c_;
decltype(1_K / 1_m) d_;
};
void registerRandomStreams(int seed) {
RNGManager<>::getInstance().registerRandomStream("cascade");
RNGManager<>::getInstance().registerRandomStream("qgsjet");
RNGManager<>::getInstance().registerRandomStream("sibyll");
RNGManager<>::getInstance().registerRandomStream("pythia");
RNGManager<>::getInstance().registerRandomStream("urqmd");
RNGManager<>::getInstance().registerRandomStream("proposal");
if (seed == 0) {
std::random_device rd;
seed = rd();
cout << "new random seed (auto) " << seed << endl;
}
RNGManager<>::getInstance().setSeed(seed);
}
template <typename T>
using MyExtraEnv = MediumPropertyModel<UniformMagneticField<T>>;
// argv : 1.number of nucleons, 2.number of protons,
// 3.total energy in GeV, 4.number of showers,
// 5.seed (0 by default to generate random values for all)
int main(int argc, char** argv) {
// the main command line description
CLI::App app{"Simulate standard (downgoing) showers with CORSIKA 8."};
// some options that we want to fill in
int A, Z, nevent = 0;
// the following section adds the options to the parser
// we start by definining a sub-group for the primary ID
auto opt_Z = app.add_option("-Z", Z, "Atomic number for primary")
->check(CLI::Range(0, 26))
->group("Primary");
auto opt_A = app.add_option("-A", A, "Atomic mass number for primary")
->needs(opt_Z)
->check(CLI::Range(1, 58))
->group("Primary");
app.add_option("-p,--pdg", "PDG code for primary.")
->excludes(opt_A)
->excludes(opt_Z)
->group("Primary");
// the remainding options
app.add_option("-E,--energy", "Primary energy in GeV")
->required()
->check(CLI::PositiveNumber)
->group("Primary");
app.add_option("-z,--zenith", "Primary zenith angle (deg)")
->required()
->default_val(0.)
->check(CLI::Range(0, 90))
->group("Primary");
app.add_option("-a,--azimuth", "Primary azimuth angle (deg)")
->default_val(0.)
->check(CLI::Range(0, 360))
->group("Primary");
app.add_option("-N,--nevent", nevent, "The number of events/showers to run.")
->required()
->check(CLI::PositiveNumber)
->group("Library/Output");
app.add_option("-f,--filename", "Filename for output library.")
->required()
->default_val("corsika_library")
->check(CLI::NonexistentPath)
->group("Library/Output");
app.add_option("-s,--seed", "The random number seed.")
->default_val(12351739)
->check(CLI::NonNegativeNumber)
->group("Misc.");
app.add_flag("--force-interaction", "Force the location of the first interaction.")
->group("Misc.");
app.add_option("-v,--verbosity", "Verbosity level: warn, info, debug, trace.")
->default_val("info")
->check(CLI::IsMember({"warn", "info", "debug", "trace"}))
->group("Misc.");
// parse the command line options into the variables
CLI11_PARSE(app, argc, argv);
if (app.count("--verbosity")) {
string const loglevel = app["verbosity"]->as<string>();
if (loglevel == "warn") {
logging::set_level(logging::level::warn);
} else if (loglevel == "info") {
logging::set_level(logging::level::info);
} else if (loglevel == "debug") {
logging::set_level(logging::level::debug);
} else if (loglevel == "trace") {
#ifndef DEBUG
CORSIKA_LOG_ERROR("trace log level requires a Debug build.");
return 1;
#endif
logging::set_level(logging::level::trace);
}
}
// check that we got either PDG or A/Z
// this can be done with option_groups but the ordering
// gets all messed up
if (app.count("--pdg") == 0) {
if ((app.count("-A") == 0) || (app.count("-Z") == 0)) {
std::cerr << "If --pdg is not provided, then both -A and -Z are required."
<< std::endl;
return 1;
}
}
// initialize random number sequence(s)
registerRandomStreams(app["--seed"]->as<int>());
/* === START: SETUP ENVIRONMENT AND ROOT COORDINATE SYSTEM === */
using EnvType = setup::Environment;
EnvType env;
CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
Point const center{rootCS, 0_m, 0_m, 0_m};
LengthType const radiusMars = 3389.5_km;
auto builder =
make_layered_spherical_atmosphere_builder<setup::EnvironmentInterface, MyExtraEnv>::
create(center,
radiusMars, // Mars
Medium::AirDry1Atm, // Mars, close enough
MagneticFieldVector{rootCS, 0_T, 0_uT, 0_T}); // Mars
builder.setNuclearComposition( // Mars
{{Code::Nitrogen, Code::Oxygen}, {1. / 3., 2. / 3.}}); // simplified
//{{Code::Carbon, Code::Oxygen, // 95.97 CO2
// Code::Nitrogen}, // 1.89 N2 + 1.93 Argon + 0.146 O2
// {0.9597 / 3, 0.9597 * 2 / 3,
// 1 - 0.9597}}); // values taken from AIRES manual, Ar removed for now
MarsAtmModel layer1(0.699e3 * pascal, 0.00009 / 1_m, 31.0 * degree_celsius,
0.000998 * 1 * degree_celsius / 1_m);
MarsAtmModel layer2(0.699e3 * pascal, 0.00009 / 1_m, 23.4 * degree_celsius,
0.00222 * 1 * degree_celsius / 1_m);
builder.addTabularLayer(layer1, 100, 100_m, 7_km);
builder.addTabularLayer(layer2, 300, 500_m, 100_km);
builder.addLinearLayer(1e9_cm, 112.8_km);
builder.assemble(env);
/* === END: SETUP ENVIRONMENT AND ROOT COORDINATE SYSTEM === */
ofstream atmout("mars.dat");
for (LengthType h = 0_m; h < 110_km; h += 100_m) {
Point const ptest{rootCS, 0_m, 0_m, builder.getPlanetRadius() + h};
auto rho =
env.getUniverse()->getContainingNode(ptest)->getModelProperties().getMassDensity(
ptest);
atmout << h / 1_m << " " << rho / 1_kg * cube(1_m) << "\n";
}
atmout.close();
/* === START: CONSTRUCT PRIMARY PARTICLE === */
// parse the primary ID as a PDG or A/Z code
Code beamCode;
HEPEnergyType mass;
// check if we want to use a PDG code instead
if (app.count("--pdg") > 0) {
beamCode = convert_from_PDG(PDGCode(app["--pdg"]->as<int>()));
mass = get_mass(beamCode);
} else {
// check manually for proton and neutrons
if ((A == 0) && (Z == 1)) beamCode = Code::Proton;
if ((A == 1) && (Z == 1)) beamCode = Code::Neutron;
mass = get_nucleus_mass(A, Z);
}
// particle energy
HEPEnergyType const E0 = 1_GeV * app["--energy"]->as<float>();
// direction of the shower in (theta, phi) space
auto const thetaRad = app["--zenith"]->as<float>() / 180. * M_PI;
auto const phiRad = app["--azimuth"]->as<float>() / 180. * M_PI;
// convert Elab to Plab
HEPMomentumType P0 = sqrt((E0 - mass) * (E0 + mass));
// convert the momentum to the zenith and azimuth angle of the primary
auto const [px, py, pz] =
std::make_tuple(P0 * sin(thetaRad) * cos(phiRad), P0 * sin(thetaRad) * sin(phiRad),
-P0 * cos(thetaRad));
auto plab = MomentumVector(rootCS, {px, py, pz});
/* === END: CONSTRUCT PRIMARY PARTICLE === */
/* === START: CONSTRUCT GEOMETRY === */
auto const observationHeight = 0_km + builder.getPlanetRadius();
auto const injectionHeight = 111.75_km + builder.getPlanetRadius();
auto const t = -observationHeight * cos(thetaRad) +
sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) +
static_pow<2>(injectionHeight));
Point const showerCore{rootCS, 0_m, 0_m, observationHeight};
Point const injectionPos =
showerCore + DirectionVector{rootCS,
{-sin(thetaRad) * cos(phiRad),
-sin(thetaRad) * sin(phiRad), cos(thetaRad)}} *
t;
// we make the axis much longer than the inj-core distance since the
// profile will go beyond the core, depending on zenith angle
ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.2, env};
/* === END: CONSTRUCT GEOMETRY === */
// create the output manager that we then register outputs with
OutputManager output(app["--filename"]->as<std::string>());
/* === START: SETUP PROCESS LIST === */
corsika::sibyll::Interaction sibyll;
InteractionCounter sibyllCounted(sibyll);
corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
InteractionCounter sibyllNucCounted(sibyllNuc);
corsika::pythia8::Decay decayPythia;
// use sibyll decay routine for decays of particles unknown to pythia
corsika::sibyll::Decay decaySibyll{{
Code::N1440Plus,
Code::N1440MinusBar,
Code::N1440_0,
Code::N1440_0Bar,
Code::N1710Plus,
Code::N1710MinusBar,
Code::N1710_0,
Code::N1710_0Bar,
Code::Pi1300Plus,
Code::Pi1300Minus,
Code::Pi1300_0,
Code::KStar0_1430_0,
Code::KStar0_1430_0Bar,
Code::KStar0_1430_Plus,
Code::KStar0_1430_MinusBar,
}};
// decaySibyll.printDecayConfig();
ParticleCut cut{1_GeV, 1_GeV, 1_GeV, 1_GeV, false};
corsika::proposal::Interaction emCascade(env);
corsika::proposal::ContinuousProcess emContinuous(env);
InteractionCounter emCascadeCounted(emCascade);
LongitudinalProfile longprof{showerAxis};
corsika::urqmd::UrQMD urqmd;
InteractionCounter urqmdCounted{urqmd};
StackInspector<setup::Stack> stackInspect(5000, false, E0);
// assemble all processes into an ordered process list
struct EnergySwitch {
HEPEnergyType cutE_;
EnergySwitch(HEPEnergyType cutE)
: cutE_(cutE) {}
bool operator()(const Particle& p) { return (p.getKineticEnergy() < cutE_); }
};
auto hadronSequence = make_select(EnergySwitch(80_GeV), urqmdCounted,
make_sequence(sibyllNucCounted, sibyllCounted));
auto decaySequence = make_sequence(decayPythia, decaySibyll);
// track writer
TrackWriter trackWriter;
output.add("tracks", trackWriter); // register TrackWriter
// observation plane
Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.}));
ObservationPlane<setup::Tracking, NoOutput> observationLevel(
obsPlane, DirectionVector(rootCS, {1., 0., 0.}));
// register the observation plane with the output
output.add("particles", observationLevel);
// assemble the final process sequence
auto sequence =
make_sequence(stackInspect, hadronSequence, decaySequence, emCascadeCounted,
emContinuous, cut, trackWriter, observationLevel, longprof);
/* === END: SETUP PROCESS LIST === */
// create the cascade object using the default stack and tracking implementation
setup::Tracking tracking;
setup::Stack stack;
Cascade EAS(env, tracking, sequence, output, stack);
// print our primary parameters all in one place
if (app["--pdg"]->count() > 0) {
CORSIKA_LOG_INFO("Primary PDG ID: {}", app["--pdg"]->as<int>());
} else {
CORSIKA_LOG_INFO("Primary Z/A: {}/{}", Z, A);
}
CORSIKA_LOG_INFO("Primary Energy: {}", E0);
CORSIKA_LOG_INFO("Primary Momentum: {}", P0);
CORSIKA_LOG_INFO("Point of Injection: {}", injectionPos.getCoordinates());
CORSIKA_LOG_INFO("Shower Axis Length: {}", (showerCore - injectionPos).getNorm() * 1.2);
// trigger the output manager to open the library for writing
output.startOfLibrary();
// loop over each shower
for (int i_shower = 1; i_shower < nevent + 1; i_shower++) {
CORSIKA_LOG_INFO("Shower {} / {} ", i_shower, nevent);
// trigger the start of the outputs for this shower
output.startOfShower();
// directory for outputs
string const labHist_file = "inthist_lab_verticalEAS_" + to_string(i_shower) + ".npz";
string const cMSHist_file = "inthist_cms_verticalEAS_" + to_string(i_shower) + ".npz";
string const longprof_file = "longprof_verticalEAS_" + to_string(i_shower) + ".txt";
// setup particle stack, and add primary particle
stack.clear();
// add the desired particle to the stack
if (A > 1) {
stack.addParticle(std::make_tuple(beamCode, plab, injectionPos, 0_ns, A, Z));
} else {
stack.addParticle(std::make_tuple(beamCode, plab, injectionPos, 0_ns));
}
// if we want to fix the first location of the shower
if (app["--force-interaction"]) EAS.forceInteraction();
// run the shower
EAS.run();
cut.showResults();
// emContinuous.showResults();
observationLevel.showResults();
const HEPEnergyType Efinal = cut.getCutEnergy() + cut.getInvEnergy() +
cut.getEmEnergy() + // emContinuous.getEnergyLost() +
observationLevel.getEnergyGround();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
observationLevel.reset();
cut.reset();
// emContinuous.reset();
auto const hists = sibyllCounted.getHistogram() + sibyllNucCounted.getHistogram() +
urqmdCounted.getHistogram();
save_hist(hists.labHist(), labHist_file, true);
save_hist(hists.CMSHist(), cMSHist_file, true);
longprof.save(longprof_file);
// trigger the output manager to save this shower to disk
output.endOfShower();
}
// and finalize the output on disk
output.endOfLibrary();
}