IAP GITLAB

Skip to content
Snippets Groups Projects
mars.cpp 16.6 KiB
Newer Older
ralfulrich's avatar
ralfulrich committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*
 * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
 *
 * This software is distributed under the terms of the GNU General Public
 * Licence version 3 (GPL Version 3). See file LICENSE for a full version of
 * the license.
 */

/* clang-format off */
// InteractionCounter used boost/histogram, which
// fails if boost/type_traits have been included before. Thus, we have
// to include it first...
#include <corsika/framework/process/InteractionCounter.hpp>
/* clang-format on */
#include <corsika/framework/geometry/Plane.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/core/Logging.hpp>
#include <corsika/framework/utility/SaveBoostHistogram.hpp>
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/process/SwitchProcessSequence.hpp>
#include <corsika/framework/process/InteractionCounter.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/geometry/PhysicalGeometry.hpp>

#include <corsika/output/OutputManager.hpp>
#include <corsika/output/NoOutput.hpp>

#include <corsika/media/Environment.hpp>
#include <corsika/media/FlatExponential.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMagneticFieldModel.hpp>
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/media/ShowerAxis.hpp>
#include <corsika/media/SlidingPlanarExponential.hpp>

#include <corsika/modules/BetheBlochPDG.hpp>
#include <corsika/modules/LongitudinalProfile.hpp>
#include <corsika/modules/ObservationPlane.hpp>
#include <corsika/modules/OnShellCheck.hpp>
#include <corsika/modules/StackInspector.hpp>
#include <corsika/modules/TrackWriter.hpp>
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/Pythia8.hpp>
#include <corsika/modules/Sibyll.hpp>
#include <corsika/modules/UrQMD.hpp>
#include <corsika/modules/PROPOSAL.hpp>
#include <corsika/modules/QGSJetII.hpp>

#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>

#include <CLI/App.hpp>
#include <CLI/Formatter.hpp>
#include <CLI/Config.hpp>

#include <iomanip>
#include <iostream>
#include <limits>
#include <string>

/*
  NOTE, WARNING, ATTENTION

  The .../Random.hpp implement the hooks of external modules to the C8 random
  number generator. It has to occur excatly ONCE per linked
  executable. If you include the header below multiple times and
  link this togehter, it will fail.
 */
#include <corsika/modules/Random.hpp>

using namespace corsika;
using namespace std;

using Particle = setup::Stack::particle_type;

typedef decltype(1 * pascal) PressureType;
typedef decltype(1 * degree_celsius) TemperatureType;

class MarsAtmModel {
public:
  MarsAtmModel() = delete;
  MarsAtmModel(PressureType a, InverseLengthType b, TemperatureType c,
               decltype(1 * degree_celsius / 1_m) d)
      : a_(a)
      , b_(b)
      , c_(c)
      , d_(d) {}

  MassDensityType operator()(LengthType height) const {
    PressureType const pressure = a_ * exp(-b_ * height);
    TemperatureType const temperature = -c_ - d_ * height + 273.1_K; // in K
    constexpr decltype(square(1_m) / (square(1_s) * 1_K)) constant =
        1000 * 0.1921 * square(1_m) / (square(1_s) * 1_K);
    return pressure / (constant * temperature);
  }

private:
  PressureType a_;
  InverseLengthType b_;
  TemperatureType c_;
  decltype(1_K / 1_m) d_;
};

void registerRandomStreams(int seed) {
  RNGManager<>::getInstance().registerRandomStream("cascade");
  RNGManager<>::getInstance().registerRandomStream("qgsjet");
  RNGManager<>::getInstance().registerRandomStream("sibyll");
  RNGManager<>::getInstance().registerRandomStream("pythia");
  RNGManager<>::getInstance().registerRandomStream("urqmd");
  RNGManager<>::getInstance().registerRandomStream("proposal");
  if (seed == 0) {
    std::random_device rd;
    seed = rd();
    cout << "new random seed (auto) " << seed << endl;
  }
  RNGManager<>::getInstance().setSeed(seed);
}

template <typename T>
using MyExtraEnv = MediumPropertyModel<UniformMagneticField<T>>;

// argv : 1.number of nucleons, 2.number of protons,
//        3.total energy in GeV, 4.number of showers,
//        5.seed (0 by default to generate random values for all)

int main(int argc, char** argv) {

  // the main command line description
  CLI::App app{"Simulate standard (downgoing) showers with CORSIKA 8."};

  // some options that we want to fill in
  int A, Z, nevent = 0;

  // the following section adds the options to the parser

  // we start by definining a sub-group for the primary ID
  auto opt_Z = app.add_option("-Z", Z, "Atomic number for primary")
                   ->check(CLI::Range(0, 26))
                   ->group("Primary");
  auto opt_A = app.add_option("-A", A, "Atomic mass number for primary")
                   ->needs(opt_Z)
                   ->check(CLI::Range(1, 58))
                   ->group("Primary");
  app.add_option("-p,--pdg", "PDG code for primary.")
      ->excludes(opt_A)
      ->excludes(opt_Z)
      ->group("Primary");
  // the remainding options
  app.add_option("-E,--energy", "Primary energy in GeV")
      ->required()
      ->check(CLI::PositiveNumber)
      ->group("Primary");
  app.add_option("-z,--zenith", "Primary zenith angle (deg)")
      ->required()
      ->default_val(0.)
      ->check(CLI::Range(0, 90))
      ->group("Primary");
  app.add_option("-a,--azimuth", "Primary azimuth angle (deg)")
      ->default_val(0.)
      ->check(CLI::Range(0, 360))
      ->group("Primary");
  app.add_option("-N,--nevent", nevent, "The number of events/showers to run.")
      ->required()
      ->check(CLI::PositiveNumber)
      ->group("Library/Output");
  app.add_option("-f,--filename", "Filename for output library.")
      ->required()
      ->default_val("corsika_library")
      ->check(CLI::NonexistentPath)
      ->group("Library/Output");
  app.add_option("-s,--seed", "The random number seed.")
      ->default_val(12351739)
      ->check(CLI::NonNegativeNumber)
      ->group("Misc.");
  app.add_flag("--force-interaction", "Force the location of the first interaction.")
      ->group("Misc.");
  app.add_option("-v,--verbosity", "Verbosity level: warn, info, debug, trace.")
      ->default_val("info")
      ->check(CLI::IsMember({"warn", "info", "debug", "trace"}))
      ->group("Misc.");

  // parse the command line options into the variables
  CLI11_PARSE(app, argc, argv);

  if (app.count("--verbosity")) {
    string const loglevel = app["verbosity"]->as<string>();
    if (loglevel == "warn") {
      logging::set_level(logging::level::warn);
    } else if (loglevel == "info") {
      logging::set_level(logging::level::info);
    } else if (loglevel == "debug") {
      logging::set_level(logging::level::debug);
    } else if (loglevel == "trace") {
#ifndef DEBUG
      CORSIKA_LOG_ERROR("trace log level requires a Debug build.");
      return 1;
#endif
      logging::set_level(logging::level::trace);
    }
  }

  // check that we got either PDG or A/Z
  // this can be done with option_groups but the ordering
  // gets all messed up
  if (app.count("--pdg") == 0) {
    if ((app.count("-A") == 0) || (app.count("-Z") == 0)) {
      std::cerr << "If --pdg is not provided, then both -A and -Z are required."
                << std::endl;
      return 1;
    }
  }

  // initialize random number sequence(s)
  registerRandomStreams(app["--seed"]->as<int>());

  /* === START: SETUP ENVIRONMENT AND ROOT COORDINATE SYSTEM === */
  using EnvType = setup::Environment;
  EnvType env;
  CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
  Point const center{rootCS, 0_m, 0_m, 0_m};
  LengthType const radiusMars = 3389.5_km;
  auto builder =
      make_layered_spherical_atmosphere_builder<setup::EnvironmentInterface, MyExtraEnv>::
          create(center,
                 radiusMars,                                   // Mars
                 Medium::AirDry1Atm,                           // Mars, close enough
                 MagneticFieldVector{rootCS, 0_T, 0_uT, 0_T}); // Mars

  builder.setNuclearComposition(                             // Mars
      {{Code::Nitrogen, Code::Oxygen}, {1. / 3., 2. / 3.}}); // simplified
  //{{Code::Carbon, Code::Oxygen, // 95.97 CO2
  //          Code::Nitrogen},            // 1.89 N2 + 1.93 Argon + 0.146 O2
  //       {0.9597 / 3, 0.9597 * 2 / 3,
  //      1 - 0.9597}}); // values taken from AIRES manual, Ar removed for now

  MarsAtmModel layer1(0.699e3 * pascal, 0.00009 / 1_m, 31.0 * degree_celsius,
                      0.000998 * 1 * degree_celsius / 1_m);
  MarsAtmModel layer2(0.699e3 * pascal, 0.00009 / 1_m, 23.4 * degree_celsius,
                      0.00222 * 1 * degree_celsius / 1_m);

  builder.addTabularLayer(layer1, 100, 100_m, 7_km);
  builder.addTabularLayer(layer2, 300, 500_m, 100_km);
  builder.addLinearLayer(1e9_cm, 112.8_km);
  builder.assemble(env);
  /* === END: SETUP ENVIRONMENT AND ROOT COORDINATE SYSTEM === */

  ofstream atmout("mars.dat");
  for (LengthType h = 0_m; h < 110_km; h += 100_m) {
    Point const ptest{rootCS, 0_m, 0_m, builder.getPlanetRadius() + h};
    auto rho =
        env.getUniverse()->getContainingNode(ptest)->getModelProperties().getMassDensity(
            ptest);
    atmout << h / 1_m << " " << rho / 1_kg * cube(1_m) << "\n";
  }
  atmout.close();

  /* === START: CONSTRUCT PRIMARY PARTICLE === */

  // parse the primary ID as a PDG or A/Z code
  Code beamCode;
  HEPEnergyType mass;

  // check if we want to use a PDG code instead
  if (app.count("--pdg") > 0) {
    beamCode = convert_from_PDG(PDGCode(app["--pdg"]->as<int>()));
    mass = get_mass(beamCode);
  } else {
    // check manually for proton and neutrons
    if ((A == 0) && (Z == 1)) beamCode = Code::Proton;
    if ((A == 1) && (Z == 1)) beamCode = Code::Neutron;
    mass = get_nucleus_mass(A, Z);
  }

  // particle energy
  HEPEnergyType const E0 = 1_GeV * app["--energy"]->as<float>();

  // direction of the shower in (theta, phi) space
  auto const thetaRad = app["--zenith"]->as<float>() / 180. * M_PI;
  auto const phiRad = app["--azimuth"]->as<float>() / 180. * M_PI;

  // convert Elab to Plab
  HEPMomentumType P0 = sqrt((E0 - mass) * (E0 + mass));

  // convert the momentum to the zenith and azimuth angle of the primary
  auto const [px, py, pz] =
      std::make_tuple(P0 * sin(thetaRad) * cos(phiRad), P0 * sin(thetaRad) * sin(phiRad),
                      -P0 * cos(thetaRad));
  auto plab = MomentumVector(rootCS, {px, py, pz});
  /* === END: CONSTRUCT PRIMARY PARTICLE === */

  /* === START: CONSTRUCT GEOMETRY === */
  auto const observationHeight = 0_km + builder.getPlanetRadius();
  auto const injectionHeight = 111.75_km + builder.getPlanetRadius();
  auto const t = -observationHeight * cos(thetaRad) +
                 sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) +
                      static_pow<2>(injectionHeight));
  Point const showerCore{rootCS, 0_m, 0_m, observationHeight};
  Point const injectionPos =
      showerCore + DirectionVector{rootCS,
                                   {-sin(thetaRad) * cos(phiRad),
                                    -sin(thetaRad) * sin(phiRad), cos(thetaRad)}} *
                       t;

  // we make the axis much longer than the inj-core distance since the
  // profile will go beyond the core, depending on zenith angle
  ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.2, env};
  /* === END: CONSTRUCT GEOMETRY === */

  // create the output manager that we then register outputs with
  OutputManager output(app["--filename"]->as<std::string>());

  /* === START: SETUP PROCESS LIST === */
  corsika::sibyll::Interaction sibyll;
  InteractionCounter sibyllCounted(sibyll);

  corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
  InteractionCounter sibyllNucCounted(sibyllNuc);

  corsika::pythia8::Decay decayPythia;

  // use sibyll decay routine for decays of particles unknown to pythia
  corsika::sibyll::Decay decaySibyll{{
      Code::N1440Plus,
      Code::N1440MinusBar,
      Code::N1440_0,
      Code::N1440_0Bar,
      Code::N1710Plus,
      Code::N1710MinusBar,
      Code::N1710_0,
      Code::N1710_0Bar,

      Code::Pi1300Plus,
      Code::Pi1300Minus,
      Code::Pi1300_0,

      Code::KStar0_1430_0,
      Code::KStar0_1430_0Bar,
      Code::KStar0_1430_Plus,
      Code::KStar0_1430_MinusBar,
  }};

  // decaySibyll.printDecayConfig();

  ParticleCut cut{1_GeV, 1_GeV, 1_GeV, 1_GeV, false};
  corsika::proposal::Interaction emCascade(env);
  corsika::proposal::ContinuousProcess emContinuous(env);
  InteractionCounter emCascadeCounted(emCascade);

  LongitudinalProfile longprof{showerAxis};

  corsika::urqmd::UrQMD urqmd;
  InteractionCounter urqmdCounted{urqmd};
  StackInspector<setup::Stack> stackInspect(5000, false, E0);

  // assemble all processes into an ordered process list
  struct EnergySwitch {
    HEPEnergyType cutE_;
    EnergySwitch(HEPEnergyType cutE)
        : cutE_(cutE) {}
    bool operator()(const Particle& p) { return (p.getKineticEnergy() < cutE_); }
  };
  auto hadronSequence = make_select(EnergySwitch(80_GeV), urqmdCounted,
                                    make_sequence(sibyllNucCounted, sibyllCounted));
  auto decaySequence = make_sequence(decayPythia, decaySibyll);

  // track writer
  TrackWriter trackWriter;
  output.add("tracks", trackWriter); // register TrackWriter

  // observation plane
  Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.}));
  ObservationPlane<setup::Tracking, NoOutput> observationLevel(
      obsPlane, DirectionVector(rootCS, {1., 0., 0.}));
  // register the observation plane with the output
  output.add("particles", observationLevel);

  // assemble the final process sequence
  auto sequence =
      make_sequence(stackInspect, hadronSequence, decaySequence, emCascadeCounted,
                    emContinuous, cut, trackWriter, observationLevel, longprof);
  /* === END: SETUP PROCESS LIST === */

  // create the cascade object using the default stack and tracking implementation
  setup::Tracking tracking;
  setup::Stack stack;
  Cascade EAS(env, tracking, sequence, output, stack);

  // print our primary parameters all in one place
  if (app["--pdg"]->count() > 0) {
    CORSIKA_LOG_INFO("Primary PDG ID: {}", app["--pdg"]->as<int>());
  } else {
    CORSIKA_LOG_INFO("Primary Z/A: {}/{}", Z, A);
  }
  CORSIKA_LOG_INFO("Primary Energy: {}", E0);
  CORSIKA_LOG_INFO("Primary Momentum: {}", P0);
  CORSIKA_LOG_INFO("Point of Injection: {}", injectionPos.getCoordinates());
  CORSIKA_LOG_INFO("Shower Axis Length: {}", (showerCore - injectionPos).getNorm() * 1.2);

  // trigger the output manager to open the library for writing
  output.startOfLibrary();

  // loop over each shower
  for (int i_shower = 1; i_shower < nevent + 1; i_shower++) {
    CORSIKA_LOG_INFO("Shower {} / {} ", i_shower, nevent);

    // trigger the start of the outputs for this shower
    output.startOfShower();

    // directory for outputs
    string const labHist_file = "inthist_lab_verticalEAS_" + to_string(i_shower) + ".npz";
    string const cMSHist_file = "inthist_cms_verticalEAS_" + to_string(i_shower) + ".npz";
    string const longprof_file = "longprof_verticalEAS_" + to_string(i_shower) + ".txt";

    // setup particle stack, and add primary particle
    stack.clear();

    // add the desired particle to the stack
    if (A > 1) {
      stack.addParticle(std::make_tuple(beamCode, plab, injectionPos, 0_ns, A, Z));
    } else {
      stack.addParticle(std::make_tuple(beamCode, plab, injectionPos, 0_ns));
    }

    // if we want to fix the first location of the shower
    if (app["--force-interaction"]) EAS.forceInteraction();

    // run the shower
    EAS.run();

    cut.showResults();
    // emContinuous.showResults();
    observationLevel.showResults();
    const HEPEnergyType Efinal = cut.getCutEnergy() + cut.getInvEnergy() +
                                 cut.getEmEnergy() + // emContinuous.getEnergyLost() +
                                 observationLevel.getEnergyGround();
    cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
         << "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
    observationLevel.reset();
    cut.reset();
    // emContinuous.reset();

    auto const hists = sibyllCounted.getHistogram() + sibyllNucCounted.getHistogram() +
                       urqmdCounted.getHistogram();

    save_hist(hists.labHist(), labHist_file, true);
    save_hist(hists.CMSHist(), cMSHist_file, true);
    longprof.save(longprof_file);

    // trigger the output manager to save this shower to disk
    output.endOfShower();
  }

  // and finalize the output on disk
  output.endOfLibrary();
}