IAP GITLAB
Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
corsika
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Air Shower Physics
corsika
Commits
def128eb
Commit
def128eb
authored
4 years ago
by
Nikos Karastathis
Browse files
Options
Downloads
Patches
Plain Diff
first try of synchnotron radiation example (need to tweak StraightPropagator.hpp first)
parent
55dc75f4
No related branches found
No related tags found
1 merge request
!329
Radio interface
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/radio_shower2.cpp
+96
-234
96 additions, 234 deletions
examples/radio_shower2.cpp
with
96 additions
and
234 deletions
examples/radio_shower2.cpp
+
96
−
234
View file @
def128eb
...
...
@@ -6,48 +6,25 @@
* the license.
*/
/* clang-format off */
// InteractionCounter used boost/histogram, which
// fails if boost/type_traits have been included before. Thus, we have
// to include it first...
#include
<corsika/framework/process/InteractionCounter.hpp>
/* clang-format on */
#include
<corsika/framework/geometry/Plane.hpp>
#include
<corsika/framework/geometry/Sphere.hpp>
#include
<corsika/framework/core/Logging.hpp>
#include
<corsika/framework/utility/SaveBoostHistogram.hpp>
#include
<corsika/framework/core/Cascade.hpp>
#include
<corsika/framework/process/ProcessSequence.hpp>
#include
<corsika/framework/process/SwitchProcessSequence.hpp>
#include
<corsika/framework/process/InteractionCounter.hpp>
#include
<corsika/framework/random/RNGManager.hpp>
#include
<corsika/framework/core/PhysicalUnits.hpp>
#include
<corsika/framework/random/RNGManager.hpp>
#include
<corsika/framework/geometry/Sphere.hpp>
#include
<corsika/framework/utility/CorsikaFenv.hpp>
#include
<corsika/framework/core/Cascade.hpp>
#include
<corsika/framework/geometry/PhysicalGeometry.hpp>
#include
<corsika/framework/core/Logging.hpp>
#include
<corsika/media/Environment.hpp>
#include
<corsika/media/FlatExponential.hpp>
#include
<corsika/media/HomogeneousMedium.hpp>
#include
<corsika/media/IMagneticFieldModel.hpp>
#include
<corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include
<corsika/media/NuclearComposition.hpp>
#include
<corsika/media/ShowerAxis.hpp>
#include
<corsika/media/MediumPropertyModel.hpp>
#include
<corsika/media/UniformMagneticField.hpp>
#include
<corsika/media/UniformRefractiveIndex.hpp>
#include
<corsika/media/ShowerAxis.hpp>
#include
<corsika/media/SlidingPlanarExponential.hpp>
#include
<corsika/modules/BetheBlochPDG.hpp>
#include
<corsika/modules/LongitudinalProfile.hpp>
#include
<corsika/modules/ObservationPlane.hpp>
#include
<corsika/modules/OnShellCheck.hpp>
#include
<corsika/modules/StackInspector.hpp>
#include
<corsika/modules/TrackWriter.hpp>
#include
<corsika/modules/ParticleCut.hpp>
#include
<corsika/modules/Pythia8.hpp>
#include
<corsika/modules/Sibyll.hpp>
#include
<corsika/modules/UrQMD.hpp>
#include
<corsika/modules/PROPOSAL.hpp>
#include
<corsika/setup/SetupEnvironment.hpp>
#include
<corsika/setup/SetupStack.hpp>
#include
<corsika/setup/SetupTrajectory.hpp>
#include
<corsika/modules/radio/RadioProcess.hpp>
#include
<corsika/modules/radio/CoREAS.hpp>
...
...
@@ -58,14 +35,13 @@
#include
<corsika/modules/radio/propagators/SignalPath.hpp>
#include
<corsika/modules/radio/propagators/RadioPropagator.hpp>
#include
<corsika/setup/SetupStack.hpp>
#include
<corsika/setup/SetupTrajectory.hpp>
#include
<iomanip>
#include
<iostream>
#include
<limits>
#include
<string>
#include
<corsika/modules/BetheBlochPDG.hpp>
#include
<corsika/modules/StackInspector.hpp>
#include
<corsika/modules/Sibyll.hpp>
#include
<corsika/modules/ParticleCut.hpp>
#include
<corsika/modules/TrackWriter.hpp>
#include
<corsika/modules/HadronicElasticModel.hpp>
#include
<corsika/modules/Pythia8.hpp>
/*
NOTE, WARNING, ATTENTION
...
...
@@ -78,241 +54,127 @@
#include
<corsika/modules/sibyll/Random.hpp>
#include
<corsika/modules/urqmd/Random.hpp>
#include
<iostream>
#include
<limits>
#include
<typeinfo>
using
namespace
corsika
;
using
namespace
std
;
using
Particle
=
setup
::
Stack
::
particle_type
;
void
registerRandomStreams
(
const
int
seed
)
{
RNGManager
::
getInstance
().
registerRandomStream
(
"cascade"
);
RNGManager
::
getInstance
().
registerRandomStream
(
"qgsjet"
);
RNGManager
::
getInstance
().
registerRandomStream
(
"sibyll"
);
RNGManager
::
getInstance
().
registerRandomStream
(
"pythia"
);
RNGManager
::
getInstance
().
registerRandomStream
(
"urqmd"
);
RNGManager
::
getInstance
().
registerRandomStream
(
"proposal"
);
if
(
seed
==
0
)
RNGManager
::
getInstance
().
seedAll
();
else
RNGManager
::
getInstance
().
seedAll
(
seed
);
}
//
// The example main program for a particle cascade
//
int
main
()
{
int
main
(
int
argc
,
char
**
argv
)
{
logging
::
set_level
(
logging
::
level
::
info
);
corsika_logger
->
set_pattern
(
"[%n:%^%-8l%$] custom pattern: %v"
);
corsika_logger
->
set_pattern
(
"[%n:%^%-8l%$] %s:%#: %v"
);
logging
::
set_level
(
logging
::
level
::
trace
);
std
::
cout
<<
"cascade_proton_example"
<<
std
::
endl
;
CORSIKA_LOG_INFO
(
"vertical_EAS"
);
if
(
argc
<
4
)
{
std
::
cerr
<<
"usage: vertical_EAS <A> <Z> <energy/GeV> [seed]"
<<
std
::
endl
;
std
::
cerr
<<
" if no seed is given, a random seed is chosen"
<<
std
::
endl
;
return
1
;
}
feenableexcept
(
FE_INVALID
);
int
seed
=
0
;
if
(
argc
>
4
)
seed
=
std
::
stoi
(
std
::
string
(
argv
[
4
]));
// initialize random number sequence(s)
registerRandomStream
s
(
seed
);
RNGManager
::
getInstance
().
registerRandomStream
(
"cascade"
);
// setup environment
using
IModelInterface
=
IRefractiveIndexModel
<
IMediumPropertyModel
<
IMagneticFieldModel
<
IMediumModel
>>>
;
using
AtmModel
=
UniformRefractiveIndex
<
MediumPropertyModel
<
UniformMagneticField
<
HomogeneousMedium
<
IModelInterface
>>>>
;
using
EnvType
=
Environment
<
AtmModel
>
;
// setup environment, geometry
using
EnvType
=
setup
::
Environment
;
EnvType
env
;
auto
&
universe
=
*
(
env
.
getUniverse
());
CoordinateSystemPtr
const
&
rootCS
=
env
.
getCoordinateSystem
();
Point
const
center
{
rootCS
,
0
_m
,
0
_m
,
0
_m
};
// the antenna location
const
auto
point1
{
Point
(
env
.
getCoordinateSystem
(),
50
_m
,
50
_m
,
50
_m
)};
const
auto
point2
{
Point
(
env
.
getCoordinateSystem
(),
25
_m
,
25
_m
,
25
_m
)};
const
auto
point1
{
Point
(
rootCS
,
50
_m
,
50
_m
,
0
_m
)};
const
auto
point2
{
Point
(
rootCS
,
50
_m
,
-
50
_m
,
0
_m
)};
const
auto
point3
{
Point
(
rootCS
,
-
50
_m
,
50
_m
,
0
_m
)};
const
auto
point4
{
Point
(
rootCS
,
-
50
_m
,
-
50
_m
,
0
_m
)};
// the antennas
TimeDomainAntenna
ant1
(
"antenna1"
,
point1
,
0
_s
,
100
_s
,
1
/
1e-8
_s
);
TimeDomainAntenna
ant2
(
"antenna2"
,
point2
,
0
_s
,
100
_s
,
1
/
1e-8
_s
);
TimeDomainAntenna
ant1
(
"antenna1"
,
point1
,
0
_s
,
1
_s
,
1
/
1e+6
_s
);
TimeDomainAntenna
ant2
(
"antenna2"
,
point2
,
0
_s
,
1
_s
,
1
/
1e+6
_s
);
TimeDomainAntenna
ant3
(
"antenna3"
,
point3
,
0
_s
,
1
_s
,
1
/
1e+6
_s
);
TimeDomainAntenna
ant4
(
"antenna4"
,
point4
,
0
_s
,
1
_s
,
1
/
1e+6
_s
);
// the detector
AntennaCollection
<
TimeDomainAntenna
>
detector
;
detector
.
addAntenna
(
ant1
);
detector
.
addAntenna
(
ant2
);
// a refractive index
const
double
ri_
{
1.000327
};
// the constant density
const
auto
density
{
19.2
_g
/
cube
(
1
_cm
)};
// the composition we use for the homogeneous medium
NuclearComposition
const
protonComposition
(
std
::
vector
<
Code
>
{
Code
::
Proton
},
std
::
vector
<
float
>
{
1.
f
});
// create magnetic field vector
Vector
B0
(
rootCS
,
0
_T
,
50
_uT
,
0
_T
);
// create the medium
auto
Medium
=
EnvType
::
createNode
<
Sphere
>
(
center
,
1
_km
*
std
::
numeric_limits
<
double
>::
infinity
());
// set the properties
auto
const
props
=
Medium
->
setModelProperties
<
AtmModel
>
(
ri_
,
Medium
::
AirDry1Atm
,
B0
,
density
,
protonComposition
);
env
.
getUniverse
()
->
addChild
(
std
::
move
(
Medium
));
detector
.
addAntenna
(
ant3
);
detector
.
addAntenna
(
ant4
);
auto
world
=
EnvType
::
createNode
<
Sphere
>
(
Point
{
rootCS
,
0
_m
,
0
_m
,
0
_m
},
150
_km
);
using
MyHomogeneousModel
=
MediumPropertyModel
<
UniformMagneticField
<
HomogeneousMedium
<
setup
::
EnvironmentInterface
>>>
;
world
->
setModelProperties
<
MyHomogeneousModel
>
(
Medium
::
AirDry1Atm
,
MagneticFieldVector
(
rootCS
,
0
_T
,
0
_T
,
1
_T
),
1
_kg
/
(
1
_m
*
1
_m
*
1
_m
),
NuclearComposition
(
std
::
vector
<
Code
>
{
Code
::
Hydrogen
},
std
::
vector
<
float
>
{(
float
)
1.
}));
universe
.
addChild
(
std
::
move
(
world
));
// setup particle stack, and add primary particle
setup
::
Stack
stack
;
stack
.
clear
();
const
Code
beamCode
=
Code
::
Nucleus
;
unsigned
short
const
A
=
std
::
stoi
(
std
::
string
(
argv
[
1
]));
unsigned
short
Z
=
std
::
stoi
(
std
::
string
(
argv
[
2
]));
auto
const
mass
=
get_nucleus_mass
(
A
,
Z
);
const
HEPEnergyType
E0
=
1
_GeV
*
std
::
stof
(
std
::
string
(
argv
[
3
]));
const
Code
beamCode
=
Code
::
Electron
;
const
HEPMassType
mass
=
Electron
::
mass
;
const
HEPEnergyType
E0
=
1000
_GeV
;
double
theta
=
0.
;
auto
const
thetaRad
=
theta
/
180.
*
M_PI
;
auto
elab2plab
=
[](
HEPEnergyType
Elab
,
HEPMassType
m
)
{
return
sqrt
((
Elab
-
m
)
*
(
Elab
+
m
));
};
HEPMomentumType
P0
=
elab2plab
(
E0
,
mass
);
auto
momentumComponents
=
[](
double
thetaRad
,
HEPMomentumType
ptot
)
{
return
std
::
make_tuple
(
ptot
*
sin
(
thetaRad
),
0
_eV
,
-
ptot
*
cos
(
thetaRad
));
};
auto
const
[
px
,
py
,
pz
]
=
momentumComponents
(
thetaRad
,
P0
);
auto
plab
=
MomentumVector
(
rootCS
,
{
px
,
py
,
pz
});
cout
<<
"input particle: "
<<
beamCode
<<
endl
;
cout
<<
"input angles: theta="
<<
theta
<<
endl
;
cout
<<
"input momentum: "
<<
plab
.
getComponents
()
/
1
_GeV
<<
", norm = "
<<
plab
.
getNorm
()
<<
endl
;
auto
const
observationHeight
=
0
_km
+
builder
.
getEarthRadius
();
auto
const
injectionHeight
=
112.75
_km
+
builder
.
getEarthRadius
();
auto
const
t
=
-
observationHeight
*
cos
(
thetaRad
)
+
sqrt
(
-
static_pow
<
2
>
(
sin
(
thetaRad
)
*
observationHeight
)
+
static_pow
<
2
>
(
injectionHeight
));
Point
const
showerCore
{
rootCS
,
0
_m
,
0
_m
,
observationHeight
};
Point
const
injectionPos
=
showerCore
+
DirectionVector
{
rootCS
,
{
-
sin
(
thetaRad
),
0
,
cos
(
thetaRad
)}}
*
t
;
std
::
cout
<<
"point of injection: "
<<
injectionPos
.
getCoordinates
()
<<
std
::
endl
;
if
(
A
!=
1
)
{
stack
.
addParticle
(
std
::
make_tuple
(
beamCode
,
E0
,
plab
,
injectionPos
,
0
_ns
,
A
,
Z
));
}
else
{
if
(
Z
==
1
)
{
stack
.
addParticle
(
std
::
make_tuple
(
Code
::
Proton
,
E0
,
plab
,
injectionPos
,
0
_ns
));
}
else
if
(
Z
==
0
)
{
stack
.
addParticle
(
std
::
make_tuple
(
Code
::
Neutron
,
E0
,
plab
,
injectionPos
,
0
_ns
));
}
else
{
std
::
cerr
<<
"illegal parameters"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
double
phi
=
0.
;
Point
injectionPos
(
rootCS
,
0
_m
,
0
_m
,
0
_m
);
{
auto
elab2plab
=
[](
HEPEnergyType
Elab
,
HEPMassType
m
)
{
return
sqrt
(
Elab
*
Elab
-
m
*
m
);
};
HEPMomentumType
P0
=
elab2plab
(
E0
,
mass
);
auto
momentumComponents
=
[](
double
theta
,
double
phi
,
HEPMomentumType
ptot
)
{
return
std
::
make_tuple
(
ptot
*
sin
(
theta
)
*
cos
(
phi
),
ptot
*
sin
(
theta
)
*
sin
(
phi
),
-
ptot
*
cos
(
theta
));
};
auto
const
[
px
,
py
,
pz
]
=
momentumComponents
(
theta
/
180.
*
M_PI
,
phi
/
180.
*
M_PI
,
P0
);
auto
plab
=
MomentumVector
(
rootCS
,
{
px
,
py
,
pz
});
cout
<<
"input particle: "
<<
beamCode
<<
endl
;
cout
<<
"input angles: theta="
<<
theta
<<
" phi="
<<
phi
<<
endl
;
cout
<<
"input momentum: "
<<
plab
.
getComponents
()
/
1
_GeV
<<
endl
;
stack
.
addParticle
(
std
::
make_tuple
(
beamCode
,
E0
,
plab
,
injectionPos
,
0
_ns
));
}
// we make the axis much longer than the inj-core distance since the
// profile will go beyond the core, depending on zenith angle
std
::
cout
<<
"shower axis length: "
<<
(
showerCore
-
injectionPos
).
getNorm
()
*
1.5
<<
std
::
endl
;
ShowerAxis
const
showerAxis
{
injectionPos
,
(
showerCore
-
injectionPos
)
*
1.5
,
env
};
// setup processes, decays and interactions
setup
::
Tracking
tracking
;
StackInspector
<
setup
::
Stack
>
stackInspect
(
1
,
true
,
E0
);
corsika
::
sibyll
::
Interaction
sibyll
;
InteractionCounter
sibyllCounted
(
sibyll
);
corsika
::
sibyll
::
NuclearInteraction
sibyllNuc
(
sibyll
,
env
);
InteractionCounter
sibyllNucCounted
(
sibyllNuc
);
corsika
::
pythia8
::
Decay
decayPythia
;
// use sibyll decay routine for decays of particles unknown to pythia
corsika
::
sibyll
::
Decay
decaySibyll
{{
Code
::
N1440Plus
,
Code
::
N1440MinusBar
,
Code
::
N1440_0
,
Code
::
N1440_0Bar
,
Code
::
N1710Plus
,
Code
::
N1710MinusBar
,
Code
::
N1710_0
,
Code
::
N1710_0Bar
,
Code
::
Pi1300Plus
,
Code
::
Pi1300Minus
,
Code
::
Pi1300_0
,
Code
::
KStar0_1430_0
,
Code
::
KStar0_1430_0Bar
,
Code
::
KStar0_1430_Plus
,
Code
::
KStar0_1430_MinusBar
,
}};
decaySibyll
.
printDecayConfig
();
ParticleCut
cut
{
60
_GeV
,
60
_GeV
,
60
_GeV
,
60
_GeV
,
true
};
corsika
::
proposal
::
Interaction
emCascade
(
env
);
corsika
::
proposal
::
ContinuousProcess
emContinuous
(
env
);
InteractionCounter
emCascadeCounted
(
emCascade
);
// ParticleCut cut(60_GeV, true, true);
// put radio process here
RadioProcess
<
decltype
(
detector
),
CoREAS
<
decltype
(
detector
),
decltype
(
StraightPropagator
(
env
))
>
,
decltype
(
StraightPropagator
(
env
))
>
coreas
(
detector
,
env
);
OnShellCheck
reset_particle_mass
(
1.e-3
,
1.e-1
,
false
);
TrackWriter
trackWriter
(
"tracks.dat"
);
LongitudinalProfile
longprof
{
showerAxis
};
Plane
const
obsPlane
(
showerCore
,
DirectionVector
(
rootCS
,
{
0.
,
0.
,
1.
}));
ObservationPlane
observationLevel
(
obsPlane
,
DirectionVector
(
rootCS
,
{
1.
,
0.
,
0.
}),
"particles.dat"
);
corsika
::
urqmd
::
UrQMD
urqmd
;
InteractionCounter
urqmdCounted
{
urqmd
};
StackInspector
<
setup
::
Stack
>
stackInspect
(
1000
,
false
,
E0
)
;
TrackWriter
trackWriter
(
"tracks.dat"
)
;
ShowerAxis
const
showerAxis
{
injectionPos
,
Vector
{
rootCS
,
0
_m
,
0
_m
,
-
100
_km
},
env
};
// BetheBlochPDG eLoss{showerAxis}
;
// assemble all processes into an ordered process list
struct
EnergySwitch
{
HEPEnergyType
cutE_
;
EnergySwitch
(
HEPEnergyType
cutE
)
:
cutE_
(
cutE
)
{}
SwitchResult
operator
()(
const
Particle
&
p
)
{
if
(
p
.
getEnergy
()
<
cutE_
)
return
SwitchResult
::
First
;
else
return
SwitchResult
::
Second
;
}
};
auto
hadronSequence
=
make_select
(
urqmdCounted
,
make_sequence
(
sibyllNucCounted
,
sibyllCounted
),
EnergySwitch
(
55
_GeV
));
auto
decaySequence
=
make_sequence
(
decayPythia
,
decaySibyll
);
auto
sequence
=
make_sequence
(
stackInspect
,
hadronSequence
,
reset_particle_mass
,
decaySequence
,
emContinuous
,
cut
,
coreas
,
trackWriter
,
observationLevel
,
longprof
);
// auto sequence = make_sequence(sibyll, sibyllNuc, decay, eLoss, cut, trackWriter,
// stackInspect); auto sequence = make_sequence(sibyll, decay, eLoss, cut, trackWriter,
// stackInspect);
auto
sequence
=
make_sequence
(
coreas
,
trackWriter
,
stackInspect
);
// define air shower object, run simulation
setup
::
Tracking
tracking
;
Cascade
EAS
(
env
,
tracking
,
sequence
,
stack
);
// to fix the point of first interaction, uncomment the following two lines:
// EAS.forceInteraction();
EAS
.
run
();
cout
<<
"Result: E0="
<<
E0
/
1
_GeV
<<
endl
;
cut
.
showResults
();
emContinuous
.
showResults
();
observationLevel
.
showResults
();
const
HEPEnergyType
Efinal
=
cut
.
getCutEnergy
()
+
cut
.
getInvEnergy
()
+
cut
.
getEmEnergy
()
+
emContinuous
.
getEnergyLost
()
+
observationLevel
.
getEnergyGround
();
cout
<<
"total cut energy (GeV): "
<<
Efinal
/
1
_GeV
<<
endl
<<
"relative difference (%): "
<<
(
Efinal
/
E0
-
1
)
*
100
<<
endl
;
observationLevel
.
reset
();
cut
.
reset
();
emContinuous
.
reset
();
const
HEPEnergyType
Efinal
=
cut
.
getCutEnergy
()
+
cut
.
getInvEnergy
()
+
cut
.
getEmEnergy
();
cout
<<
"total energy (GeV): "
<<
Efinal
/
1
_GeV
<<
endl
<<
"relative difference (%): "
<<
(
Efinal
/
E0
-
1.
)
*
100
<<
endl
;
// get radio output
coreas
.
writeOutput
();
auto
const
hists
=
sibyllCounted
.
getHistogram
()
+
sibyllNucCounted
.
getHistogram
()
+
urqmdCounted
.
getHistogram
();
save_hist
(
hists
.
labHist
(),
"inthist_lab_verticalEAS.npz"
,
true
);
save_hist
(
hists
.
CMSHist
(),
"inthist_cms_verticalEAS.npz"
,
true
);
longprof
.
save
(
"longprof_verticalEAS.txt"
);
}
\ No newline at end of file
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment