IAP GITLAB
Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
corsika
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Air Shower Physics
corsika
Commits
d139637d
Commit
d139637d
authored
3 years ago
by
Nikos Karastathis
Committed by
Nikos Karastathis
2 years ago
Browse files
Options
Downloads
Patches
Plain Diff
updated version of radio electron shower
parent
61c06a03
No related branches found
No related tags found
1 merge request
!329
Radio interface
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/radio_em_shower.cpp
+164
-191
164 additions, 191 deletions
examples/radio_em_shower.cpp
with
164 additions
and
191 deletions
examples/radio_em_shower.cpp
+
164
−
191
View file @
d139637d
...
...
@@ -72,10 +72,10 @@
using
namespace
corsika
;
using
namespace
std
;
void
registerRandomStreams
()
{
RNGManager
::
getInstance
().
registerRandomStream
(
"cascade"
);
RNGManager
::
getInstance
().
registerRandomStream
(
"proposal"
);
RNGManager
::
getInstance
().
seedAll
();
void
registerRandomStreams
(
const
int
seed
)
{
RNGManager
::
getInstance
().
registerRandomStream
(
"cascade"
);
RNGManager
::
getInstance
().
registerRandomStream
(
"proposal"
);
RNGManager
::
getInstance
().
seedAll
(
seed
);
}
template
<
typename
TInterface
>
...
...
@@ -84,184 +84,157 @@ UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<TInterface>>>;
int
main
(
int
argc
,
char
**
argv
)
{
logging
::
set_level
(
logging
::
level
::
info
);
if
(
argc
!=
2
)
{
std
::
cerr
<<
"usage: em_shower <energy/GeV>"
<<
std
::
endl
;
return
1
;
}
feenableexcept
(
FE_INVALID
);
// initialize random number sequence(s)
registerRandomStreams
();
// setup environment, geometry
using
EnvType
=
setup
::
Environment
;
EnvType
env
;
CoordinateSystemPtr
const
&
rootCS
=
env
.
getCoordinateSystem
();
Point
const
center
{
rootCS
,
0
_m
,
0
_m
,
0
_m
};
auto
builder
=
make_layered_spherical_atmosphere_builder
<
setup
::
EnvironmentInterface
,
MyExtraEnv
>::
create
(
center
,
constants
::
EarthRadius
::
Mean
,
1.000327
,
Medium
::
AirDry1Atm
,
MagneticFieldVector
{
rootCS
,
50
_uT
,
0
_T
,
0
_T
});
builder
.
setNuclearComposition
(
{{
Code
::
Nitrogen
,
Code
::
Oxygen
},
{
0.7847
f
,
1.
f
-
0.7847
f
}});
// values taken from AIRES manual, Ar removed for now
builder
.
addExponentialLayer
(
1222.6562
_g
/
(
1
_cm
*
1
_cm
),
994186.38
_cm
,
2
_km
);
builder
.
addExponentialLayer
(
1222.6562
_g
/
(
1
_cm
*
1
_cm
),
994186.38
_cm
,
4
_km
);
builder
.
addExponentialLayer
(
1144.9069
_g
/
(
1
_cm
*
1
_cm
),
878153.55
_cm
,
10
_km
);
builder
.
addExponentialLayer
(
1305.5948
_g
/
(
1
_cm
*
1
_cm
),
636143.04
_cm
,
40
_km
);
builder
.
addExponentialLayer
(
540.1778
_g
/
(
1
_cm
*
1
_cm
),
772170.16
_cm
,
100
_km
);
builder
.
addLinearLayer
(
1e9
_cm
,
112.8
_km
+
constants
::
EarthRadius
::
Mean
);
builder
.
assemble
(
env
);
// setup particle stack, and add primary particle
setup
::
Stack
stack
;
stack
.
clear
();
const
Code
beamCode
=
Code
::
Electron
;
auto
const
mass
=
get_mass
(
beamCode
);
const
HEPEnergyType
E0
=
1
_GeV
*
std
::
stof
(
std
::
string
(
argv
[
1
]));
double
theta
=
0.
;
auto
const
thetaRad
=
theta
/
180.
*
M_PI
;
auto
elab2plab
=
[](
HEPEnergyType
Elab
,
HEPMassType
m
)
{
return
sqrt
((
Elab
-
m
)
*
(
Elab
+
m
));
};
HEPMomentumType
P0
=
elab2plab
(
E0
,
mass
);
auto
momentumComponents
=
[](
double
thetaRad
,
HEPMomentumType
ptot
)
{
return
std
::
make_tuple
(
ptot
*
sin
(
thetaRad
),
0
_eV
,
-
ptot
*
cos
(
thetaRad
));
};
auto
const
[
px
,
py
,
pz
]
=
momentumComponents
(
thetaRad
,
P0
);
auto
plab
=
MomentumVector
(
rootCS
,
{
px
,
py
,
pz
});
cout
<<
"input particle: "
<<
beamCode
<<
endl
;
cout
<<
"input angles: theta="
<<
theta
<<
endl
;
cout
<<
"input momentum: "
<<
plab
.
getComponents
()
/
1
_GeV
<<
", norm = "
<<
plab
.
getNorm
()
<<
endl
;
auto
const
observationHeight
=
1.4
_km
+
builder
.
getEarthRadius
();
auto
const
injectionHeight
=
112.75
_km
+
builder
.
getEarthRadius
();
auto
const
t
=
-
observationHeight
*
cos
(
thetaRad
)
+
sqrt
(
-
static_pow
<
2
>
(
sin
(
thetaRad
)
*
observationHeight
)
+
static_pow
<
2
>
(
injectionHeight
));
Point
const
showerCore
{
rootCS
,
0
_m
,
0
_m
,
observationHeight
};
Point
const
injectionPos
=
showerCore
+
DirectionVector
{
rootCS
,
{
-
sin
(
thetaRad
),
0
,
cos
(
thetaRad
)}}
*
t
;
std
::
cout
<<
"point of injection: "
<<
injectionPos
.
getCoordinates
()
<<
std
::
endl
;
stack
.
addParticle
(
std
::
make_tuple
(
beamCode
,
plab
,
injectionPos
,
0
_ns
));
std
::
cout
<<
"shower axis length: "
<<
(
showerCore
-
injectionPos
).
getNorm
()
*
1.02
<<
std
::
endl
;
OutputManager
output
(
"radio_em_shower_outputs"
);
ShowerAxis
const
showerAxis
{
injectionPos
,
(
showerCore
-
injectionPos
)
*
1.02
,
env
};
// the antenna time variables
const
TimeType
duration_
{
1e-6
_s
};
const
InverseTimeType
sampleRate_
{
1e+9
_Hz
};
// the detector (aka antenna collection) for CoREAS and ZHS
AntennaCollection
<
TimeDomainAntenna
>
detectorCoREAS
;
AntennaCollection
<
TimeDomainAntenna
>
detectorZHS
;
auto
const
showerCoreX_
{
showerCore
.
getCoordinates
().
getX
()};
auto
const
showerCoreY_
{
showerCore
.
getCoordinates
().
getY
()};
auto
const
injectionPosX_
{
injectionPos
.
getCoordinates
().
getX
()};
auto
const
injectionPosY_
{
injectionPos
.
getCoordinates
().
getY
()};
auto
const
injectionPosZ_
{
injectionPos
.
getCoordinates
().
getZ
()};
auto
const
triggerpoint_
{
Point
(
rootCS
,
injectionPosX_
,
injectionPosY_
,
injectionPosZ_
)};
std
::
cout
<<
"Trigger Point is: "
<<
triggerpoint_
<<
std
::
endl
;
// // setup CoREAS antennas
// for (auto radius_ = 100_m; radius_ <= 200_m; radius_ += 100_m) {
// for (auto phi_ = 0; phi_ <= 315; phi_ += 45) {
// auto phiRad_ = phi_ / 180. * M_PI;
// auto const point_ {Point(rootCS, showerCoreX_ + radius_ * cos(phiRad_), showerCoreY_ + radius_ * sin(phiRad_), builder.getEarthRadius())};
// auto triggertime_ {(triggerpoint_ - point_).getNorm() / constants::c};
// const int rr_ = static_cast<int>(radius_ / 1_m);
// std::string name_ = "CoREAS_R=" + std::to_string(rr_) + "_m--Phi=" + std::to_string(phi_) + "degrees";
// TimeDomainAntenna antenna_(name_, point_, triggertime_, duration_, sampleRate_);
// detectorCoREAS.addAntenna(antenna_);
// }
// }
//
// // setup ZHS antennas
// for (auto radius_ = 100_m; radius_ <= 200_m; radius_ += 100_m) {
// for (auto phi_ = 0; phi_ <= 315; phi_ += 45) {
// auto phiRad_ = phi_ / 180. * M_PI;
// auto const point_ {Point(rootCS, showerCoreX_ + radius_ * cos(phiRad_), showerCoreY_ + radius_ * sin(phiRad_), builder.getEarthRadius())};
// auto triggertime_ {(triggerpoint_ - point_).getNorm() / constants::c};
// const int rr_ = static_cast<int>(radius_ / 1_m);
// std::string name_ = "ZHS_R=" + std::to_string(rr_) + "_m--Phi=" + std::to_string(phi_) + "degrees";
// TimeDomainAntenna antenna_(name_, point_, triggertime_, duration_, sampleRate_);
// detectorZHS.addAntenna(antenna_);
// }
// }
// 4 dummy antennas for CoREAS
for
(
auto
radius_
=
100
_m
;
radius_
<=
200
_m
;
radius_
+=
100
_m
)
{
for
(
auto
phi_
=
0
;
phi_
<=
270
;
phi_
+=
90
)
{
auto
phiRad_
=
phi_
/
180.
*
M_PI
;
auto
const
point_
{
Point
(
rootCS
,
showerCoreX_
+
radius_
*
cos
(
phiRad_
),
showerCoreY_
+
radius_
*
sin
(
phiRad_
),
builder
.
getEarthRadius
())};
auto
triggertime_
{(
triggerpoint_
-
point_
).
getNorm
()
/
constants
::
c
};
const
int
rr_
=
static_cast
<
int
>
(
radius_
/
1
_m
);
std
::
string
name_
=
"CoREAS_R="
+
std
::
to_string
(
rr_
)
+
"_m--Phi="
+
std
::
to_string
(
phi_
)
+
"degrees"
;
TimeDomainAntenna
antenna_
(
name_
,
point_
,
triggertime_
,
duration_
,
sampleRate_
);
detectorCoREAS
.
addAntenna
(
antenna_
);
}
}
// 4 dummy antennas for ZHS
for
(
auto
radius_
=
100
_m
;
radius_
<=
200
_m
;
radius_
+=
100
_m
)
{
for
(
auto
phi_
=
0
;
phi_
<=
270
;
phi_
+=
90
)
{
auto
phiRad_
=
phi_
/
180.
*
M_PI
;
auto
const
point_
{
Point
(
rootCS
,
showerCoreX_
+
radius_
*
cos
(
phiRad_
),
showerCoreY_
+
radius_
*
sin
(
phiRad_
),
builder
.
getEarthRadius
())};
auto
triggertime_
{(
triggerpoint_
-
point_
).
getNorm
()
/
constants
::
c
};
const
int
rr_
=
static_cast
<
int
>
(
radius_
/
1
_m
);
std
::
string
name_
=
"ZHS_R="
+
std
::
to_string
(
rr_
)
+
"_m--Phi="
+
std
::
to_string
(
phi_
)
+
"degrees"
;
TimeDomainAntenna
antenna_
(
name_
,
point_
,
triggertime_
,
duration_
,
sampleRate_
);
detectorZHS
.
addAntenna
(
antenna_
);
}
}
// setup processes, decays and interactions
ParticleCut
cut
(
5
_MeV
,
5
_MeV
,
100
_GeV
,
100
_GeV
,
true
);
corsika
::
proposal
::
Interaction
emCascade
(
env
);
corsika
::
proposal
::
ContinuousProcess
emContinuous
(
env
);
InteractionCounter
emCascadeCounted
(
emCascade
);
logging
::
set_level
(
logging
::
level
::
info
);
if
(
argc
!=
4
)
{
std
::
cerr
<<
"usage: radio_em_shower <energy/GeV> <concentric ring number> <seed>"
<<
std
::
endl
;
return
1
;
}
int
seed
{
std
::
stof
(
std
::
string
(
argv
[
3
]))};
std
::
cout
<<
"Seed: "
<<
seed
<<
std
::
endl
;
feenableexcept
(
FE_INVALID
);
// initialize random number sequence(s)
registerRandomStreams
(
seed
);
// setup environment, geometry
using
EnvType
=
setup
::
Environment
;
EnvType
env
;
CoordinateSystemPtr
const
&
rootCS
=
env
.
getCoordinateSystem
();
Point
const
center
{
rootCS
,
0
_m
,
0
_m
,
0
_m
};
auto
builder
=
make_layered_spherical_atmosphere_builder
<
setup
::
EnvironmentInterface
,
MyExtraEnv
>::
create
(
center
,
constants
::
EarthRadius
::
Mean
,
1.000327
,
Medium
::
AirDry1Atm
,
MagneticFieldVector
{
rootCS
,
50
_uT
,
0
_T
,
0
_T
});
builder
.
setNuclearComposition
(
{{
Code
::
Nitrogen
,
Code
::
Oxygen
},
{
0.7847
f
,
1.
f
-
0.7847
f
}});
// values taken from AIRES manual, Ar removed for now
builder
.
addExponentialLayer
(
1222.6562
_g
/
(
1
_cm
*
1
_cm
),
994186.38
_cm
,
2
_km
);
builder
.
addExponentialLayer
(
1222.6562
_g
/
(
1
_cm
*
1
_cm
),
994186.38
_cm
,
4
_km
);
builder
.
addExponentialLayer
(
1144.9069
_g
/
(
1
_cm
*
1
_cm
),
878153.55
_cm
,
10
_km
);
builder
.
addExponentialLayer
(
1305.5948
_g
/
(
1
_cm
*
1
_cm
),
636143.04
_cm
,
40
_km
);
builder
.
addExponentialLayer
(
540.1778
_g
/
(
1
_cm
*
1
_cm
),
772170.16
_cm
,
100
_km
);
builder
.
addLinearLayer
(
1e9
_cm
,
112.8
_km
+
constants
::
EarthRadius
::
Mean
);
builder
.
assemble
(
env
);
// setup particle stack, and add primary particle
setup
::
Stack
stack
;
stack
.
clear
();
const
Code
beamCode
=
Code
::
Electron
;
auto
const
mass
=
get_mass
(
beamCode
);
const
HEPEnergyType
E0
=
1
_GeV
*
std
::
stof
(
std
::
string
(
argv
[
1
]));
double
theta
=
0.
;
auto
const
thetaRad
=
theta
/
180.
*
M_PI
;
auto
elab2plab
=
[](
HEPEnergyType
Elab
,
HEPMassType
m
)
{
return
sqrt
((
Elab
-
m
)
*
(
Elab
+
m
));
};
HEPMomentumType
P0
=
elab2plab
(
E0
,
mass
);
auto
momentumComponents
=
[](
double
thetaRad
,
HEPMomentumType
ptot
)
{
return
std
::
make_tuple
(
ptot
*
sin
(
thetaRad
),
0
_eV
,
-
ptot
*
cos
(
thetaRad
));
};
auto
const
[
px
,
py
,
pz
]
=
momentumComponents
(
thetaRad
,
P0
);
auto
plab
=
MomentumVector
(
rootCS
,
{
px
,
py
,
pz
});
cout
<<
"input particle: "
<<
beamCode
<<
endl
;
cout
<<
"input angles: theta="
<<
theta
<<
endl
;
cout
<<
"input momentum: "
<<
plab
.
getComponents
()
/
1
_GeV
<<
", norm = "
<<
plab
.
getNorm
()
<<
endl
;
auto
const
observationHeight
=
1.4
_km
+
builder
.
getEarthRadius
();
auto
const
injectionHeight
=
112.75
_km
+
builder
.
getEarthRadius
();
auto
const
t
=
-
observationHeight
*
cos
(
thetaRad
)
+
sqrt
(
-
static_pow
<
2
>
(
sin
(
thetaRad
)
*
observationHeight
)
+
static_pow
<
2
>
(
injectionHeight
));
Point
const
showerCore
{
rootCS
,
0
_m
,
0
_m
,
observationHeight
};
Point
const
injectionPos
=
showerCore
+
DirectionVector
{
rootCS
,
{
-
sin
(
thetaRad
),
0
,
cos
(
thetaRad
)}}
*
t
;
std
::
cout
<<
"point of injection: "
<<
injectionPos
.
getCoordinates
()
<<
std
::
endl
;
stack
.
addParticle
(
std
::
make_tuple
(
beamCode
,
plab
,
injectionPos
,
0
_ns
));
std
::
cout
<<
"shower axis length: "
<<
(
showerCore
-
injectionPos
).
getNorm
()
*
1.02
<<
std
::
endl
;
int
ring_number
{
std
::
stof
(
std
::
string
(
argv
[
2
]))};
// std::cout << "Ring number : " << ring_number << std::endl;
auto
const
radius_
{
ring_number
*
25
_m
};
// std::cout << "Radius = " << radius_ << std::endl;
const
int
rr_
=
static_cast
<
int
>
(
radius_
/
1
_m
);
std
::
string
outname_
=
"radio_em_shower_outputs"
+
std
::
to_string
(
rr_
);
OutputManager
output
(
outname_
);
ShowerAxis
const
showerAxis
{
injectionPos
,
(
showerCore
-
injectionPos
)
*
1.02
,
env
};
// the antenna time variables
const
TimeType
duration_
{
1e-6
_s
};
const
InverseTimeType
sampleRate_
{
1e+9
_Hz
};
// the detector (aka antenna collection) for CoREAS and ZHS
AntennaCollection
<
TimeDomainAntenna
>
detectorCoREAS
;
AntennaCollection
<
TimeDomainAntenna
>
detectorZHS
;
auto
const
showerCoreX_
{
showerCore
.
getCoordinates
().
getX
()};
auto
const
showerCoreY_
{
showerCore
.
getCoordinates
().
getY
()};
auto
const
injectionPosX_
{
injectionPos
.
getCoordinates
().
getX
()};
auto
const
injectionPosY_
{
injectionPos
.
getCoordinates
().
getY
()};
auto
const
injectionPosZ_
{
injectionPos
.
getCoordinates
().
getZ
()};
auto
const
triggerpoint_
{
Point
(
rootCS
,
injectionPosX_
,
injectionPosY_
,
injectionPosZ_
)};
std
::
cout
<<
"Trigger Point is: "
<<
triggerpoint_
<<
std
::
endl
;
// setup CoREAS antennas
for
(
auto
phi_
=
0
;
phi_
<=
315
;
phi_
+=
45
)
{
auto
phiRad_
=
phi_
/
180.
*
M_PI
;
auto
const
point_
{
Point
(
rootCS
,
showerCoreX_
+
radius_
*
cos
(
phiRad_
),
showerCoreY_
+
radius_
*
sin
(
phiRad_
),
builder
.
getEarthRadius
())};
auto
triggertime_
{(
triggerpoint_
-
point_
).
getNorm
()
/
constants
::
c
};
std
::
string
name_
=
"CoREAS_R="
+
std
::
to_string
(
rr_
)
+
"_m--Phi="
+
std
::
to_string
(
phi_
)
+
"degrees"
;
TimeDomainAntenna
antenna_
(
name_
,
point_
,
triggertime_
,
duration_
,
sampleRate_
);
detectorCoREAS
.
addAntenna
(
antenna_
);
}
// setup ZHS antennas
for
(
auto
phi_
=
0
;
phi_
<=
315
;
phi_
+=
45
)
{
auto
phiRad_
=
phi_
/
180.
*
M_PI
;
auto
const
point_
{
Point
(
rootCS
,
showerCoreX_
+
radius_
*
cos
(
phiRad_
),
showerCoreY_
+
radius_
*
sin
(
phiRad_
),
builder
.
getEarthRadius
())};
auto
triggertime_
{(
triggerpoint_
-
point_
).
getNorm
()
/
constants
::
c
};
std
::
string
name_
=
"ZHS_R="
+
std
::
to_string
(
rr_
)
+
"_m--Phi="
+
std
::
to_string
(
phi_
)
+
"degrees"
;
TimeDomainAntenna
antenna_
(
name_
,
point_
,
triggertime_
,
duration_
,
sampleRate_
);
detectorZHS
.
addAntenna
(
antenna_
);
}
// setup processes, decays and interactions
ParticleCut
cut
(
5
_MeV
,
5
_MeV
,
100
_GeV
,
100
_GeV
,
true
);
corsika
::
proposal
::
Interaction
emCascade
(
env
);
corsika
::
proposal
::
ContinuousProcess
emContinuous
(
env
);
InteractionCounter
emCascadeCounted
(
emCascade
);
// TrackWriter trackWriter;
// output.add("tracks", trackWriter); // register TrackWriter
// long. profile; columns for photon, e+, e- still need to be added
LongitudinalProfile
longprof
{
showerAxis
};
// long. profile; columns for photon, e+, e- still need to be added
LongitudinalProfile
longprof
{
showerAxis
};
// initiate CoREAS
RadioProcess
<
decltype
(
detectorCoREAS
),
CoREAS
<
decltype
(
detectorCoREAS
),
decltype
(
SimplePropagator
(
env
))
>
,
decltype
(
SimplePropagator
(
env
))
>
coreas
(
detectorCoREAS
,
env
);
// initiate CoREAS
RadioProcess
<
decltype
(
detectorCoREAS
),
CoREAS
<
decltype
(
detectorCoREAS
),
decltype
(
SimplePropagator
(
env
))
>
,
decltype
(
SimplePropagator
(
env
))
>
coreas
(
detectorCoREAS
,
env
);
// register CoREAS with the output manager
output
.
add
(
"CoREAS"
,
coreas
);
// register CoREAS with the output manager
output
.
add
(
"CoREAS"
,
coreas
);
// initiate ZHS
RadioProcess
<
decltype
(
detectorZHS
),
ZHS
<
decltype
(
detectorZHS
),
decltype
(
SimplePropagator
(
env
))
>
,
decltype
(
SimplePropagator
(
env
))
>
zhs
(
detectorZHS
,
env
);
// initiate ZHS
RadioProcess
<
decltype
(
detectorZHS
),
ZHS
<
decltype
(
detectorZHS
),
decltype
(
SimplePropagator
(
env
))
>
,
decltype
(
SimplePropagator
(
env
))
>
zhs
(
detectorZHS
,
env
);
// register ZHS with the output manager
output
.
add
(
"ZHS"
,
zhs
);
// register ZHS with the output manager
output
.
add
(
"ZHS"
,
zhs
);
// Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.}));
...
...
@@ -269,20 +242,20 @@ int main(int argc, char** argv) {
// "particles.dat");
// output.add("obsplane", observationLevel);
auto
sequence
=
make_sequence
(
emCascadeCounted
,
emContinuous
,
cut
,
longprof
,
coreas
,
zhs
);
// ,observationLevel, trackWriter);
// define air shower object, run simulation
setup
::
Tracking
tracking
;
Cascade
EAS
(
env
,
tracking
,
sequence
,
output
,
stack
);
auto
sequence
=
make_sequence
(
emCascadeCounted
,
emContinuous
,
cut
,
longprof
,
coreas
,
zhs
);
// ,observationLevel, trackWriter);
// define air shower object, run simulation
setup
::
Tracking
tracking
;
Cascade
EAS
(
env
,
tracking
,
sequence
,
output
,
stack
);
// to fix the point of first interaction, uncomment the following two lines:
// EAS.setNodes();
// EAS.forceInteraction();
// to fix the point of first interaction, uncomment the following two lines:
// EAS.setNodes();
// EAS.forceInteraction();
EAS
.
run
();
EAS
.
run
();
cut
.
showResults
();
emContinuous
.
showResults
();
cut
.
showResults
();
emContinuous
.
showResults
();
// observationLevel.showResults();
// const HEPEnergyType Efinal = cut.getCutEnergy() + cut.getInvEnergy() +
// cut.getEmEnergy() + emContinuous.getEnergyLost() +
...
...
@@ -290,13 +263,13 @@ int main(int argc, char** argv) {
// cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
// << "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
// observationLevel.reset();
cut
.
reset
();
emContinuous
.
reset
();
cut
.
reset
();
emContinuous
.
reset
();
auto
const
hists
=
emCascadeCounted
.
getHistogram
();
save_hist
(
hists
.
labHist
(),
"inthist_lab_emShower.npz"
,
true
);
save_hist
(
hists
.
CMSHist
(),
"inthist_cms_emShower.npz"
,
true
);
longprof
.
save
(
"longprof_emShower.txt"
);
auto
const
hists
=
emCascadeCounted
.
getHistogram
();
save_hist
(
hists
.
labHist
(),
"inthist_lab_emShower.npz"
,
true
);
save_hist
(
hists
.
CMSHist
(),
"inthist_cms_emShower.npz"
,
true
);
longprof
.
save
(
"longprof_emShower.txt"
);
output
.
endOfLibrary
();
output
.
endOfLibrary
();
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment