IAP GITLAB
Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
corsika
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Air Shower Physics
corsika
Commits
6178b5b0
Commit
6178b5b0
authored
3 years ago
by
André Schmidt
Committed by
ralfulrich
3 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Update WMM.hpp
parent
a5b8a120
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
corsika/media/WMM.hpp
+19
-126
19 additions, 126 deletions
corsika/media/WMM.hpp
with
19 additions
and
126 deletions
corsika/media/WMM.hpp
+
19
−
126
View file @
6178b5b0
<<<<<<<
Updated
upstream
/*
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
...
...
@@ -17,129 +16,23 @@
#include
<fstream>
namespace
corsika
{
MagneticFieldVector
get_wmm
(
const
CoordinateSystemPtr
Cs
,
const
double
year
,
const
LengthType
altitude
,
const
double
latitude
,
const
double
longitude
)
{
if
(
year
<
2020
||
year
>
2025
)
{
CORSIKA_LOG_ERROR
(
"Year has to be between 2020 and 2025."
);
abort
();
}
if
(
altitude
<
-
1
_km
||
altitude
>
850
_km
)
{
CORSIKA_LOG_WARN
(
"Altitude should be between -1_km and 850_km."
);
}
if
(
latitude
<
-
90
||
latitude
>
90
)
{
CORSIKA_LOG_ERROR
(
"Latitude has to be between -90 and 90 degree."
);
abort
();
}
else
if
(
latitude
<
-
89.992
||
latitude
>
89.992
)
{
CORSIKA_LOG_WARN
(
"Latitude is close to the poles."
);
}
if
(
longitude
<
-
180
||
longitude
>
180
)
{
CORSIKA_LOG_ERROR
(
"Longitude has to be between -180 and 180 degree."
);
abort
();
}
const
double
lat_geo
=
latitude
*
constants
::
pi
/
180
;
const
double
lon
=
longitude
*
constants
::
pi
/
180
;
// Transform into spherical coordinates
const
double
f
=
1
/
298.257223563
;
const
double
e_squared
=
f
*
(
2
-
f
);
LengthType
R_c
=
constants
::
EarthRadius
::
Equatorial
/
sqrt
(
1
-
e_squared
*
pow
(
sin
(
lat_geo
),
2
));
LengthType
p
=
(
R_c
+
altitude
)
*
cos
(
lat_geo
);
LengthType
z
=
sin
(
lat_geo
)
*
(
altitude
+
R_c
*
(
1
-
e_squared
));
LengthType
r
=
sqrt
(
p
*
p
+
z
*
z
);
double
lat_sph
=
asin
(
z
/
r
);
const
int
length
=
90
;
double
epoch
,
g
[
length
],
h
[
length
],
g_dot
[
length
],
h_dot
[
length
];
std
::
string
model_name
;
std
::
string
release_date
;
int
n
[
length
],
m
[
length
];
// Read in coefficients
boost
::
filesystem
::
path
const
path
=
corsika
::
corsika_data
(
"GeoMag/WMM.COF"
);
boost
::
filesystem
::
ifstream
file
(
path
,
std
::
ios
::
in
);
// Exit if file opening failed
if
(
!
file
.
is_open
()){
CORSIKA_LOG_ERROR
(
"Failed opening WMM.COF."
);
abort
();
}
file
>>
epoch
>>
model_name
>>
release_date
;
for
(
int
i
=
0
;
i
<
length
;
i
++
)
{
file
>>
n
[
i
]
>>
m
[
i
]
>>
g
[
i
]
>>
h
[
i
]
>>
g_dot
[
i
]
>>
h_dot
[
i
];
// Time interpolation
g
[
i
]
=
g
[
i
]
+
(
year
-
epoch
)
*
g_dot
[
i
];
h
[
i
]
=
h
[
i
]
+
(
year
-
epoch
)
*
h_dot
[
i
];
}
file
.
close
();
double
legendre
,
next_legendre
,
derivate_legendre
;
double
magneticfield
[
3
]
=
{
0
,
0
,
0
};
for
(
int
j
=
0
;
j
<
length
;
j
++
)
{
legendre
=
boost
::
math
::
legendre_p
(
n
[
j
],
m
[
j
],
sin
(
lat_sph
));
next_legendre
=
boost
::
math
::
legendre_p
(
n
[
j
]
+
1
,
m
[
j
],
sin
(
lat_sph
));
// Schmidt semi-normalization and Condon-Shortley phase term
if
(
m
[
j
]
>
0
)
{
legendre
*=
sqrt
(
2
*
boost
::
math
::
factorial
<
double
>
(
n
[
j
]
-
m
[
j
])
/
boost
::
math
::
factorial
<
double
>
(
n
[
j
]
+
m
[
j
]))
*
pow
(
-
1
,
m
[
j
]);
next_legendre
*=
sqrt
(
2
*
boost
::
math
::
factorial
<
double
>
(
n
[
j
]
+
1
-
m
[
j
])
/
boost
::
math
::
factorial
<
double
>
(
n
[
j
]
+
1
+
m
[
j
]))
*
pow
(
-
1
,
m
[
j
]);
}
derivate_legendre
=
(
n
[
j
]
+
1
)
*
tan
(
lat_sph
)
*
legendre
-
sqrt
(
pow
(
n
[
j
]
+
1
,
2
)
-
pow
(
m
[
j
],
2
))
/
cos
(
lat_sph
)
*
next_legendre
;
magneticfield
[
0
]
+=
pow
(
constants
::
EarthRadius
::
Geomagnetic_reference
/
r
,
n
[
j
]
+
2
)
*
(
g
[
j
]
*
cos
(
m
[
j
]
*
lon
)
+
h
[
j
]
*
sin
(
m
[
j
]
*
lon
))
*
derivate_legendre
;
magneticfield
[
1
]
+=
pow
(
constants
::
EarthRadius
::
Geomagnetic_reference
/
r
,
n
[
j
]
+
2
)
*
m
[
j
]
*
(
g
[
j
]
*
sin
(
m
[
j
]
*
lon
)
-
h
[
j
]
*
cos
(
m
[
j
]
*
lon
))
*
legendre
;
magneticfield
[
2
]
+=
(
n
[
j
]
+
1
)
*
pow
(
constants
::
EarthRadius
::
Geomagnetic_reference
/
r
,
n
[
j
]
+
2
)
*
(
g
[
j
]
*
cos
(
m
[
j
]
*
lon
)
+
h
[
j
]
*
sin
(
m
[
j
]
*
lon
))
*
legendre
;
}
magneticfield
[
0
]
*=
-
1
;
magneticfield
[
1
]
/=
cos
(
lat_sph
);
magneticfield
[
2
]
*=
-
1
;
// Transform back into geodetic coordinates
double
magneticfield_geo
[
3
];
magneticfield_geo
[
0
]
=
magneticfield
[
0
]
*
cos
(
lat_sph
-
lat_geo
)
-
magneticfield
[
2
]
*
sin
(
lat_sph
-
lat_geo
);
magneticfield_geo
[
1
]
=
magneticfield
[
1
];
magneticfield_geo
[
2
]
=
magneticfield
[
0
]
*
sin
(
lat_sph
-
lat_geo
)
+
magneticfield
[
2
]
*
cos
(
lat_sph
-
lat_geo
);
return
MagneticFieldVector
{
Cs
,
magneticfield_geo
[
0
]
*
1
_nT
,
magneticfield_geo
[
1
]
*
1
_nT
,
magneticfield_geo
[
2
]
*
-
1
_nT
};
}
}
=======
/*
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include
<boost/filesystem.hpp>
#include
<boost/math/special_functions/factorials.hpp>
#include
<boost/math/special_functions/legendre.hpp>
#include
<cmath>
#include
<corsika/framework/core/Logging.hpp>
#include
<corsika/framework/utility/CorsikaData.hpp>
#include
<fstream>
namespace
corsika
{
/**
* A magnetic field calculated with the WMM model
*
* @param year Year of the evaluation, between 2020 and 2025.
* @param altitude Height of the location to evaluate the field at,
in km between -1 and 850.
* @param latitude Latitude of the location to evaluate the field at,
in degrees between -90 and 90 (negative for southern hemisphere).
* @param longitute Longitude of the location to evaluate the field at,
in degrees between -180 and 180 (negative for western hemisphere).
*
* @returns The magnetic field vector in nT.
*
*/
inline
MagneticFieldVector
get_wmm
(
const
CoordinateSystemPtr
Cs
,
const
double
year
,
const
LengthType
altitude
,
const
double
latitude
,
const
double
longitude
);
}
// namespace corsika
/**
* A magnetic field calculated with the WMM model
*
* @param year Year of the evaluation, between 2020 and 2025.
* @param altitude Height of the location to evaluate the field at,
in km between -1 and 850.
* @param latitude Latitude of the location to evaluate the field at,
in degrees between -90 and 90 (negative for southern hemisphere).
* @param longitute Longitude of the location to evaluate the field at,
in degrees between -180 and 180 (negative for western hemisphere).
*
* @returns The magnetic field vector in nT.
*
*/
inline
MagneticFieldVector
get_wmm
(
const
CoordinateSystemPtr
Cs
,
const
double
year
,
const
LengthType
altitude
,
const
double
latitude
,
const
double
longitude
);
}
// namespace corsika
#include
<corsika/detail/media/WMM.inl>
>>>>>>>
Stashed
changes
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment