IAP GITLAB

Skip to content
Snippets Groups Projects
Commit 47faeb67 authored by ralfulrich's avatar ralfulrich
Browse files

added FourVector with tests

parent e26402aa
No related branches found
No related tags found
1 merge request!54Resolve "Adding FourVectors"
Pipeline #201 passed
#ifndef _include_corsika_framework_geometry_fourvector_h_
#define _include_corsika_framework_geometry_fourvector_h_
#include <corsika/geometry/Vector.h>
#include <corsika/units/PhysicalUnits.h>
#include <iostream>
#include <type_traits>
namespace corsika::geometry {
/**
FourVector supports "full" units, e.g. E in [GeV/c] and p in [GeV],
or also t in [s] and r in [m], etc.
However, for HEP applications it is also possible to use E and p
both in [GeV].
The FourVector can return NormSqr and Norm, whereas Norm is
sqrt(abs(NormSqr)). The physical units are always calculated and
returned properly.
FourVector can also return if it is TimeLike, SpaceLike or PhotonLike.
When a FourVector is initialized with a lvalue reference, this is
also used for the internal storage, which should lead to complete
disappearance of the FourVector class during optimization.
*/
template <typename TimeType, typename SpaceVec> class FourVector {
public:
using SpaceType = typename std::decay<SpaceVec>::type::Quantity;
/// check the types and the physical units here:
static_assert(
std::is_same<typename std::decay<TimeType>::type, SpaceType>::value ||
std::is_same<typename std::decay<TimeType>::type,
decltype(std::declval<SpaceType>() /
corsika::units::si::meter *
corsika::units::si::second)>::value,
"Units of time-like and space-like coordinates must either be idential "
"(e.g. GeV) or [E/c]=[p]");
public:
/*
template <typename TT, typename SS>
FourVector(TT && eT, SS && eS)
: fTimeLike(std::forward<TT>(eT)), fSpaceLike(std::forward<SS>(eS)) {
std::cout << "FourVector&&\n"; }
*/
FourVector(const TimeType &eT, const SpaceVec &eS)
: fTimeLike(eT), fSpaceLike(eS) {
// std::cout << "FourVector const &\n";
}
/*
FourVector(TimeType &eT, SpaceVec &eS)
: fTimeLike(eT), fSpaceLike(eS) {
std::cout << "FourVector &\n"; }
*/
TimeType GetTime() { return fTimeLike; }
auto GetNormSqr() const {
return GetTimeSquared() - fSpaceLike.squaredNorm();
}
SpaceType GetNorm() const { return sqrt(abs(GetNormSqr())); }
bool IsTimelike() const {
return GetTimeSquared() < fSpaceLike.squaredNorm();
} // Norm2 < 0
bool IsSpacelike() const {
return GetTimeSquared() > fSpaceLike.squaredNorm();
} // Norm2 > 0
bool IsPhotonlike() const {
return GetTimeSquared() == fSpaceLike.squaredNorm();
} // // Norm2 == 0
FourVector &operator+=(const FourVector &b) {
fTimeLike += b.fTimeLike;
fSpaceLike += b.fSpaceLike;
return *this;
}
FourVector &operator-=(const FourVector &b) {
fTimeLike -= b.fTimeLike;
fSpaceLike -= b.fSpaceLike;
return *this;
}
FourVector &operator*=(const double b) {
fTimeLike *= b;
fSpaceLike *= b;
return *this;
}
FourVector &operator/=(const double b) {
fTimeLike /= b;
fSpaceLike.GetComponents() /= b; // TODO: WHY IS THIS??????
return *this;
}
FourVector &operator/(const double b) {
*this /= b;
return *this;
}
/**
Note that the product between two 4-vectors assumes that you use
the same "c" convention for both. Only the LHS vector is checked
for this. You cannot mix different conventions due to
unit-checking.
*/
SpaceType operator*(const FourVector &b) {
if constexpr (std::is_same<typename std::decay<TimeType>::type,
decltype(std::declval<SpaceType>() /
corsika::units::si::meter *
corsika::units::si::second)>::value)
return fTimeLike * b.fTimeLike *
(corsika::units::constants::c * corsika::units::constants::c) -
fSpaceLike.norm();
else
return fTimeLike * fTimeLike - fSpaceLike.norm();
}
private:
/**
This function is automatically compiled to use of ignore the
extra factor of "c" for the time-like quantity
*/
auto GetTimeSquared() const {
if constexpr (std::is_same<typename std::decay<TimeType>::type,
decltype(std::declval<SpaceType>() /
corsika::units::si::meter *
corsika::units::si::second)>::value)
return fTimeLike * fTimeLike *
(corsika::units::constants::c * corsika::units::constants::c);
else
return fTimeLike * fTimeLike;
}
protected:
/// the data members
TimeType fTimeLike;
SpaceVec fSpaceLike;
/// the friends: math operators
template <typename T, typename U>
friend FourVector<T, U> operator+(const FourVector<T, U> &,
const FourVector<T, U> &);
template <typename T, typename U>
friend FourVector<T, U> operator-(const FourVector<T, U> &,
const FourVector<T, U> &);
template <typename T, typename U>
friend FourVector<T, U> operator*(const FourVector<T, U> &, const double);
template <typename T, typename U>
friend FourVector<T, U> operator/(const FourVector<T, U> &, const double);
};
/*
//template<typename T, typename U> FourVector(T& t, U& u) ->
FourVector<decltype(t), decltype(u)>; template<typename T, typename U>
FourVector(const T& t, const U& u) -> FourVector<const typename
std::decay<T>::type, const typename std::decay<U>::type>; template<typename T,
typename U> FourVector(T&& t, U&& u) -> FourVector<typename std::decay<T>::type,
typename std::decay<U>::type>;
// template<typename T, typename U> FourVector(T&& t, U&& u) ->
FourVector<decltype(t), decltype(u)>;
*/
/**
The math operator+
*/
template <typename TimeType, typename SpaceVec>
inline FourVector<TimeType, SpaceVec>
operator+(const FourVector<TimeType, SpaceVec> &a,
const FourVector<TimeType, SpaceVec> &b) {
return FourVector<TimeType, SpaceVec>(a.fTimeLike + b.fTimeLike,
a.fSpaceLike + b.fSpaceLike);
}
/**
The math operator-
*/
template <typename TimeType, typename SpaceVec>
inline FourVector<TimeType, SpaceVec>
operator-(const FourVector<TimeType, SpaceVec> &a,
const FourVector<TimeType, SpaceVec> &b) {
return FourVector<TimeType, SpaceVec>(a.fTimeLike - b.fTimeLike,
a.fSpaceLike - b.fSpaceLike);
}
/**
The math operator*
*/
template <typename TimeType, typename SpaceVec>
inline FourVector<TimeType, SpaceVec>
operator*(const FourVector<TimeType, SpaceVec> &a, const double b) {
return FourVector<TimeType, SpaceVec>(a.fTimeLike * b, a.fSpaceLike * b);
}
/**
The math operator/
*/
template <typename TimeType, typename SpaceVec>
inline FourVector<TimeType, SpaceVec>
operator/(const FourVector<TimeType, SpaceVec> &a, const double b) {
return FourVector<TimeType, SpaceVec>(a.fTimeLike / b, a.fSpaceLike / b);
}
} // namespace corsika::geometry
#endif
/**
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do this in one
// cpp file
#include <catch2/catch.hpp>
#include <corsika/geometry/CoordinateSystem.h>
#include <corsika/geometry/FourVector.h>
#include <corsika/geometry/RootCoordinateSystem.h>
#include <corsika/geometry/Vector.h>
#include <corsika/units/PhysicalUnits.h>
#include <cmath>
#include <boost/type_index.hpp>
using boost::typeindex::type_id_with_cvr;
using namespace corsika::geometry;
using namespace corsika::units::si;
TEST_CASE("four vectors") {
// this is just needed as a baseline
CoordinateSystem& rootCS =
RootCoordinateSystem::GetInstance().GetRootCoordinateSystem();
/*
Test: P2 = E2 - p2 all in [GeV]
This is the typical HEP application
*/
SECTION("Energy momentum in hep-units") {
HEPEnergyType E0 = 10_GeV;
Vector<hepmomentum_d> P0(rootCS, {10_GeV, 10_GeV, 10_GeV});
FourVector p0(E0, P0);
REQUIRE(p0.GetNormSqr() == -200_GeV * 1_GeV);
REQUIRE(p0.GetNorm() == sqrt(200_GeV * 1_GeV));
}
/*
Check space/time-like
*/
SECTION("Space/time likeness") {
HEPEnergyType E0 = 20_GeV;
Vector<hepmomentum_d> P0(rootCS, {10_GeV, 0_GeV, 0_GeV});
Vector<hepmomentum_d> P1(rootCS, {10_GeV, 10_GeV, 20_GeV});
Vector<hepmomentum_d> P2(rootCS, {0_GeV, 20_GeV, 0_GeV});
FourVector p0(E0, P0);
FourVector p1(E0, P1);
FourVector p2(E0, P2);
CHECK(p0.IsSpacelike());
CHECK(!p0.IsTimelike());
CHECK(!p0.IsPhotonlike());
CHECK(!p1.IsSpacelike());
CHECK(p1.IsTimelike());
CHECK(!p1.IsPhotonlike());
CHECK(!p2.IsSpacelike());
CHECK(!p2.IsTimelike());
CHECK(p2.IsPhotonlike());
}
/*
Test: P2 = E2/c2 - p2 with E in [GeV/c] and P in [GeV]
This requires additional factors of c
*/
SECTION("Energy momentum in SI-units") {
auto E1 = 100_GeV / corsika::units::constants::c;
Vector<hepmomentum_d> P1(rootCS, {10_GeV, 5_GeV, 15_GeV});
FourVector p1(E1, P1);
const double check = 100 * 100 - 10 * 10 - 5 * 5 - 15 * 15; // for dummies...
REQUIRE(p1.GetNormSqr() / 1_GeV / 1_GeV == Approx(check));
REQUIRE(p1.GetNorm() / 1_GeV == Approx(sqrt(check)));
}
/**
Test: P2 = T2/c2 - r2 with T in [s] and r in [m]
This requires additional factors of c
*/
SECTION("Spacetime in SI-units") {
TimeType T2 = 10_m / corsika::units::constants::c;
Vector<length_d> P2(rootCS, {10_m, 5_m, 5_m});
const double check = 10 * 10 - 10 * 10 - 5 * 5 - 5 * 5; // for dummies...
FourVector p2(T2, P2);
REQUIRE(p2.GetNormSqr() == check * 1_m * 1_m);
REQUIRE(p2.GetNorm() == sqrt(abs(check)) * 1_m);
}
/**
Testing the math operators
*/
SECTION("Operators and comutions") {
HEPEnergyType E1 = 100_GeV;
Vector<hepmomentum_d> P1(rootCS, {0_GeV, 0_GeV, 0_GeV});
HEPEnergyType E2 = 0_GeV;
Vector<hepmomentum_d> P2(rootCS, {10_GeV, 0_GeV, 0_GeV});
FourVector p1(E1, P1);
const FourVector p2(E2, P2);
REQUIRE(p1.GetNorm() / 1_GeV == Approx(100.));
REQUIRE(p2.GetNorm() / 1_GeV == Approx(10.));
SECTION("product") {
FourVector p3 = p1 + p2;
REQUIRE(p3.GetNorm() / 1_GeV == Approx(sqrt(100. * 100. - 100.)));
p3 -= p2;
REQUIRE(p3.GetNorm() / 1_GeV == Approx(100.));
REQUIRE(p1.GetNorm() / 1_GeV == Approx(100.));
REQUIRE(p2.GetNorm() / 1_GeV == Approx(10.));
}
SECTION("difference") {
FourVector p3 = p1 - p2;
REQUIRE(p3.GetNorm() / 1_GeV == Approx(sqrt(100. * 100. - 100.)));
p3 += p2;
REQUIRE(p3.GetNorm() / 1_GeV == Approx(100.));
REQUIRE(p1.GetNorm() / 1_GeV == Approx(100.));
REQUIRE(p2.GetNorm() / 1_GeV == Approx(10.));
}
SECTION("scale") {
double s = 10;
FourVector p3 = p1*s;
REQUIRE(p3.GetNorm() / 1_GeV == Approx(sqrt(100. * 100. * s * s)));
p3 /= 10;
REQUIRE(p3.GetNorm() / 1_GeV == Approx(sqrt(100. * 100. )));
REQUIRE(p1.GetNorm() / 1_GeV == Approx(100.));
REQUIRE(p2.GetNorm() / 1_GeV == Approx(10.));
}
}
/*
SECTION("Use as wrapper") {
TimeType T1 = 10_m / corsika::units::constants::c;
Vector<length_d> P1(rootCS, {10_m, 5_m, 5_m});
const TimeType T2 = 10_m / corsika::units::constants::c;
const Vector<length_d> P2(rootCS, {10_m, 5_m, 5_m});
FourVector p1(T1, P1);
FourVector p2(T2, P2);
FourVector p3(TimeType(10_m/corsika::units::constants::c), Vector<length_d>(rootCS,
{10_m,10_m,10_m}));
std::cout << type_id_with_cvr<decltype(p1)>().pretty_name() << std::endl;
std::cout << type_id_with_cvr<decltype(p2)>().pretty_name() << std::endl;
std::cout << type_id_with_cvr<decltype(p3)>().pretty_name() << std::endl;
const double check = 10 * 10 - 10 * 10 - 5 * 5 - 5 * 5; // for dummies...
REQUIRE(p1.GetNormSqr() == check * 1_m * 1_m);
REQUIRE(p2.GetNormSqr() == check * 1_m * 1_m);
REQUIRE(p3.GetNormSqr() == check * 1_m * 1_m);
REQUIRE(p1.GetNorm() == sqrt(abs(check)) * 1_m);
REQUIRE(p2.GetNorm() == sqrt(abs(check)) * 1_m);
REQUIRE(p3.GetNorm() == sqrt(abs(check)) * 1_m);
}
*/
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment