IAP GITLAB
Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
corsika
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Air Shower Physics
corsika
Commits
253a1225
Commit
253a1225
authored
4 years ago
by
Nikos Karastathis
Browse files
Options
Downloads
Patches
Plain Diff
first attempt of radio shower example
parent
e9f0bf26
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!329
Radio interface
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
corsika/modules/radio/RadioProcess.hpp
+3
-1
3 additions, 1 deletion
corsika/modules/radio/RadioProcess.hpp
examples/radio_shower.cpp
+193
-1
193 additions, 1 deletion
examples/radio_shower.cpp
tests/modules/testRadio.cpp
+182
-347
182 additions, 347 deletions
tests/modules/testRadio.cpp
with
378 additions
and
349 deletions
corsika/modules/radio/RadioProcess.hpp
+
3
−
1
View file @
253a1225
...
...
@@ -83,7 +83,9 @@ namespace corsika {
// important for controlling the runtime of radio (by ignoring particles
// that aren't going to contribute i.e. heavy hadrons)
//if (valid(particle, track))
{
if
(
particle
.
is_em
)
{
return
this
->
implementation
().
simulate
(
particle
,
track
);
}
if
(
particle
==
Code
::
Electron
||
particle
==
Code
::
Positron
)
{
return
this
->
implementation
().
simulate
(
particle
,
track
);
}
//}
}
...
...
This diff is collapsed.
Click to expand it.
examples/radio_shower.cpp
+
193
−
1
View file @
253a1225
...
...
@@ -49,6 +49,15 @@
#include
<corsika/modules/UrQMD.hpp>
#include
<corsika/modules/PROPOSAL.hpp>
#include
<corsika/modules/radio/RadioProcess.hpp>
#include
<corsika/modules/radio/CoREAS.hpp>
#include
<corsika/modules/radio/antennas/TimeDomainAntenna.hpp>
#include
<corsika/modules/radio/detectors/RadioDetector.hpp>
#include
<corsika/modules/radio/propagators/StraightPropagator.hpp>
#include
<corsika/modules/radio/propagators/SignalPath.hpp>
#include
<corsika/modules/radio/propagators/RadioPropagator.hpp>
#include
<corsika/setup/SetupStack.hpp>
#include
<corsika/setup/SetupTrajectory.hpp>
...
...
@@ -110,15 +119,198 @@ int main(int argc, char** argv) {
// initialize random number sequence(s)
registerRandomStreams
(
seed
);
// setup environment
(idea 2)
// setup environment
using
EnvType
=
setup
::
Environment
;
EnvType
env
;
CoordinateSystemPtr
const
&
rootCS
=
env
.
getCoordinateSystem
();
Point
const
center
{
rootCS
,
0
_m
,
0
_m
,
0
_m
};
// the antenna location
const
auto
point1
{
Point
(
env
.
getCoordinateSystem
(),
50
_m
,
50
_m
,
50
_m
)};
const
auto
point2
{
Point
(
env
.
getCoordinateSystem
(),
25
_m
,
25
_m
,
25
_m
)};
// the antennas
TimeDomainAntenna
ant1
(
"antenna1"
,
point1
,
0
_s
,
100
_s
,
1
/
1e-8
_s
);
TimeDomainAntenna
ant2
(
"antenna2"
,
point2
,
0
_s
,
100
_s
,
1
/
1e-8
_s
);
// the detector
std
::
vector
<
TimeDomainAntenna
>
detector
;
detector
.
push_back
(
ant1
);
detector
.
push_back
(
ant2
);
auto
builder
=
make_layered_spherical_atmosphere_builder
<
setup
::
EnvironmentInterface
,
MyExtraEnv
>::
create
(
center
,
constants
::
EarthRadius
::
Mean
,
1.
,
Medium
::
AirDry1Atm
,
MagneticFieldVector
{
rootCS
,
0
_T
,
50
_uT
,
0
_T
});
builder
.
setNuclearComposition
(
{{
Code
::
Nitrogen
,
Code
::
Oxygen
},
{
0.7847
f
,
1.
f
-
0.7847
f
}});
// values taken from AIRES manual, Ar removed for now
builder
.
addExponentialLayer
(
1222.6562
_g
/
(
1
_cm
*
1
_cm
),
994186.38
_cm
,
4
_km
);
builder
.
addExponentialLayer
(
1144.9069
_g
/
(
1
_cm
*
1
_cm
),
878153.55
_cm
,
10
_km
);
builder
.
addExponentialLayer
(
1305.5948
_g
/
(
1
_cm
*
1
_cm
),
636143.04
_cm
,
40
_km
);
builder
.
addExponentialLayer
(
540.1778
_g
/
(
1
_cm
*
1
_cm
),
772170.16
_cm
,
100
_km
);
builder
.
addLinearLayer
(
1e9
_cm
,
112.8
_km
);
builder
.
assemble
(
env
);
// setup particle stack, and add primary particle
setup
::
Stack
stack
;
stack
.
clear
();
const
Code
beamCode
=
Code
::
Nucleus
;
unsigned
short
const
A
=
std
::
stoi
(
std
::
string
(
argv
[
1
]));
unsigned
short
Z
=
std
::
stoi
(
std
::
string
(
argv
[
2
]));
auto
const
mass
=
get_nucleus_mass
(
A
,
Z
);
const
HEPEnergyType
E0
=
1
_GeV
*
std
::
stof
(
std
::
string
(
argv
[
3
]));
double
theta
=
0.
;
auto
const
thetaRad
=
theta
/
180.
*
M_PI
;
auto
elab2plab
=
[](
HEPEnergyType
Elab
,
HEPMassType
m
)
{
return
sqrt
((
Elab
-
m
)
*
(
Elab
+
m
));
};
HEPMomentumType
P0
=
elab2plab
(
E0
,
mass
);
auto
momentumComponents
=
[](
double
thetaRad
,
HEPMomentumType
ptot
)
{
return
std
::
make_tuple
(
ptot
*
sin
(
thetaRad
),
0
_eV
,
-
ptot
*
cos
(
thetaRad
));
};
auto
const
[
px
,
py
,
pz
]
=
momentumComponents
(
thetaRad
,
P0
);
auto
plab
=
MomentumVector
(
rootCS
,
{
px
,
py
,
pz
});
cout
<<
"input particle: "
<<
beamCode
<<
endl
;
cout
<<
"input angles: theta="
<<
theta
<<
endl
;
cout
<<
"input momentum: "
<<
plab
.
getComponents
()
/
1
_GeV
<<
", norm = "
<<
plab
.
getNorm
()
<<
endl
;
auto
const
observationHeight
=
0
_km
+
builder
.
getEarthRadius
();
auto
const
injectionHeight
=
112.75
_km
+
builder
.
getEarthRadius
();
auto
const
t
=
-
observationHeight
*
cos
(
thetaRad
)
+
sqrt
(
-
static_pow
<
2
>
(
sin
(
thetaRad
)
*
observationHeight
)
+
static_pow
<
2
>
(
injectionHeight
));
Point
const
showerCore
{
rootCS
,
0
_m
,
0
_m
,
observationHeight
};
Point
const
injectionPos
=
showerCore
+
DirectionVector
{
rootCS
,
{
-
sin
(
thetaRad
),
0
,
cos
(
thetaRad
)}}
*
t
;
std
::
cout
<<
"point of injection: "
<<
injectionPos
.
getCoordinates
()
<<
std
::
endl
;
if
(
A
!=
1
)
{
stack
.
addParticle
(
std
::
make_tuple
(
beamCode
,
E0
,
plab
,
injectionPos
,
0
_ns
,
A
,
Z
));
}
else
{
if
(
Z
==
1
)
{
stack
.
addParticle
(
std
::
make_tuple
(
Code
::
Proton
,
E0
,
plab
,
injectionPos
,
0
_ns
));
}
else
if
(
Z
==
0
)
{
stack
.
addParticle
(
std
::
make_tuple
(
Code
::
Neutron
,
E0
,
plab
,
injectionPos
,
0
_ns
));
}
else
{
std
::
cerr
<<
"illegal parameters"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
}
// we make the axis much longer than the inj-core distance since the
// profile will go beyond the core, depending on zenith angle
std
::
cout
<<
"shower axis length: "
<<
(
showerCore
-
injectionPos
).
getNorm
()
*
1.5
<<
std
::
endl
;
ShowerAxis
const
showerAxis
{
injectionPos
,
(
showerCore
-
injectionPos
)
*
1.5
,
env
};
// setup processes, decays and interactions
corsika
::
sibyll
::
Interaction
sibyll
;
InteractionCounter
sibyllCounted
(
sibyll
);
corsika
::
sibyll
::
NuclearInteraction
sibyllNuc
(
sibyll
,
env
);
InteractionCounter
sibyllNucCounted
(
sibyllNuc
);
corsika
::
pythia8
::
Decay
decayPythia
;
// use sibyll decay routine for decays of particles unknown to pythia
corsika
::
sibyll
::
Decay
decaySibyll
{{
Code
::
N1440Plus
,
Code
::
N1440MinusBar
,
Code
::
N1440_0
,
Code
::
N1440_0Bar
,
Code
::
N1710Plus
,
Code
::
N1710MinusBar
,
Code
::
N1710_0
,
Code
::
N1710_0Bar
,
Code
::
Pi1300Plus
,
Code
::
Pi1300Minus
,
Code
::
Pi1300_0
,
Code
::
KStar0_1430_0
,
Code
::
KStar0_1430_0Bar
,
Code
::
KStar0_1430_Plus
,
Code
::
KStar0_1430_MinusBar
,
}};
decaySibyll
.
printDecayConfig
();
ParticleCut
cut
{
60
_GeV
,
60
_GeV
,
60
_GeV
,
60
_GeV
,
true
};
corsika
::
proposal
::
Interaction
emCascade
(
env
);
corsika
::
proposal
::
ContinuousProcess
emContinuous
(
env
);
InteractionCounter
emCascadeCounted
(
emCascade
);
// put radio here
CoREAS
<
TimeDomainAntenna
,
StraightPropagator
(
env
)
>
coreas
;
OnShellCheck
reset_particle_mass
(
1.e-3
,
1.e-1
,
false
);
TrackWriter
trackWriter
(
"tracks.dat"
);
LongitudinalProfile
longprof
{
showerAxis
};
Plane
const
obsPlane
(
showerCore
,
DirectionVector
(
rootCS
,
{
0.
,
0.
,
1.
}));
ObservationPlane
observationLevel
(
obsPlane
,
DirectionVector
(
rootCS
,
{
1.
,
0.
,
0.
}),
"particles.dat"
);
corsika
::
urqmd
::
UrQMD
urqmd
;
InteractionCounter
urqmdCounted
{
urqmd
};
StackInspector
<
setup
::
Stack
>
stackInspect
(
1000
,
false
,
E0
);
// assemble all processes into an ordered process list
struct
EnergySwitch
{
HEPEnergyType
cutE_
;
EnergySwitch
(
HEPEnergyType
cutE
)
:
cutE_
(
cutE
)
{}
SwitchResult
operator
()(
const
Particle
&
p
)
{
if
(
p
.
getEnergy
()
<
cutE_
)
return
SwitchResult
::
First
;
else
return
SwitchResult
::
Second
;
}
};
auto
hadronSequence
=
make_select
(
urqmdCounted
,
make_sequence
(
sibyllNucCounted
,
sibyllCounted
),
EnergySwitch
(
55
_GeV
));
auto
decaySequence
=
make_sequence
(
decayPythia
,
decaySibyll
);
auto
sequence
=
make_sequence
(
stackInspect
,
hadronSequence
,
reset_particle_mass
,
decaySequence
,
emContinuous
,
cut
,
coreas
,
trackWriter
,
observationLevel
,
longprof
);
// define air shower object, run simulation
setup
::
Tracking
tracking
;
Cascade
EAS
(
env
,
tracking
,
sequence
,
stack
);
// to fix the point of first interaction, uncomment the following two lines:
// EAS.forceInteraction();
EAS
.
run
();
cut
.
showResults
();
emContinuous
.
showResults
();
observationLevel
.
showResults
();
const
HEPEnergyType
Efinal
=
cut
.
getCutEnergy
()
+
cut
.
getInvEnergy
()
+
cut
.
getEmEnergy
()
+
emContinuous
.
getEnergyLost
()
+
observationLevel
.
getEnergyGround
();
cout
<<
"total cut energy (GeV): "
<<
Efinal
/
1
_GeV
<<
endl
<<
"relative difference (%): "
<<
(
Efinal
/
E0
-
1
)
*
100
<<
endl
;
observationLevel
.
reset
();
cut
.
reset
();
emContinuous
.
reset
();
// get radio pulse
coreas
.
writeOutput
();
auto
const
hists
=
sibyllCounted
.
getHistogram
()
+
sibyllNucCounted
.
getHistogram
()
+
urqmdCounted
.
getHistogram
();
save_hist
(
hists
.
labHist
(),
"inthist_lab_verticalEAS.npz"
,
true
);
save_hist
(
hists
.
CMSHist
(),
"inthist_cms_verticalEAS.npz"
,
true
);
longprof
.
save
(
"longprof_verticalEAS.txt"
);
}
This diff is collapsed.
Click to expand it.
tests/modules/testRadio.cpp
+
182
−
347
View file @
253a1225
...
...
@@ -49,6 +49,7 @@
#include
<corsika/framework/geometry/RootCoordinateSystem.hpp>
#include
<corsika/framework/geometry/Vector.hpp>
#include
<corsika/setup/SetupStack.hpp>
#include
<corsika/setup/SetupEnvironment.hpp>
#include
<corsika/setup/SetupTrajectory.hpp>
#include
<corsika/framework/core/PhysicalUnits.hpp>
#include
<corsika/framework/core/PhysicalConstants.hpp>
...
...
@@ -60,48 +61,14 @@ using namespace corsika;
double
constexpr
absMargin
=
1.0e-7
;
template
<
typename
T
>
using
MyExtraEnv
=
MediumPropertyModel
<
UniformMagneticField
<
T
>>
;
template
<
typename
T
>
using
UniRIndex
=
UniformRefractiveIndex
<
HomogeneousMedium
<
IRefractiveIndexModel
<
MediumPropertyModel
<
UniformMagneticField
<
T
>>>>>
;
TEST_CASE
(
"Radio"
,
"[processes]"
)
{
// create an environment with uniform refractive index of 1
using
EnvType
=
Environment
<
IRefractiveIndexModel
<
IMediumModel
>>
;
EnvType
env9
;
using
MyHomogeneousModel
=
MediumPropertyModel
<
UniformMagneticField
<
HomogeneousMedium
<
UniformRefractiveIndex
<
IRefractiveIndexModel
<
IMediumModel
>>>>>
;
auto
&
universe
=
*
(
env9
.
getUniverse
());
CoordinateSystemPtr
const
&
rootCS9
=
env9
.
getCoordinateSystem
();
auto
world
=
EnvType
::
createNode
<
Sphere
>
(
Point
{
rootCS9
,
0
_m
,
0
_m
,
0
_m
},
150
_km
);
world
->
setModelProperties
<
MyHomogeneousModel
>
(
Medium
::
AirDry1Atm
,
MagneticFieldVector
(
rootCS9
,
0
_T
,
0
_T
,
1
_T
),
1
_kg
/
(
1
_m
*
1
_m
*
1
_m
),
NuclearComposition
(
std
::
vector
<
Code
>
{
Code
::
Hydrogen
},
std
::
vector
<
float
>
{(
float
)
1.
}),
1
);
universe
.
addChild
(
std
::
move
(
world
));
// world->setModelProperties<UniRIndex>(
// 1);
//
// universe.addChild(std::move(world));
SECTION
(
"TimeDomainAntenna"
)
{
// create an environment so we can get a coordinate system
Environment
<
IMediumModel
>
env
;
using
EnvType
=
setup
::
Environment
;
EnvType
env
;
// the antenna location
const
auto
point1
{
Point
(
env
.
getCoordinateSystem
(),
1
_m
,
2
_m
,
3
_m
)};
...
...
@@ -132,138 +99,6 @@ TEST_CASE("Radio", "[processes]") {
// detector.addAntenna(ant1);
//// detector.addAntenna(ant2);
// EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// using UniRIndex =
// UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>;
// using UniRIndex =
// UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>;
//
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// EnvType env;
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// EnvType env6;
//
// // get a coordinate system
// const CoordinateSystemPtr rootCS6 = env6.getCoordinateSystem();
//
// auto Medium6 = EnvType::createNode<Sphere>(
// Point{rootCS6, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
// auto const props6 = Medium6->setModelProperties<UniRIndex>(
// 1, 1_kg / (1_m * 1_m * 1_m),
// NuclearComposition(
// std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f}));
//
// env6.getUniverse()->addChild(std::move(Medium6));
// using EnvType = setup::Environment;
// EnvType env6;
//
// CoordinateSystemPtr const& rootCS = env6.getCoordinateSystem();
//
// Point const center{rootCS, 0_m, 0_m, 0_m};
//
// auto builder = make_layered_spherical_atmosphere_builder<
// setup::EnvironmentInterface, UniRIndex>::create(center,
// constants::EarthRadius::Mean,
// Medium::AirDry1Atm,
// 1,
// MagneticFieldVector{rootCS, 0_T,
// 50_uT, 0_T});
//
// builder.setNuclearComposition(
// {{Code::Nitrogen, Code::Oxygen},
// {0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now
// builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km);
// builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km);
// builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km);
// builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km);
// builder.addLinearLayer(1e9_cm, 112.8_km);
// builder.assemble(env6);
// setup particle stack, and add primary particle
// setup::Stack stack;
// stack.clear();
// const Code beamCode = Code::Nucleus;
// unsigned short const A = std::stoi(std::string(argv[1]));
// unsigned short Z = std::stoi(std::string(argv[2]));
// auto const mass = get_nucleus_mass(A, Z);
// const HEPEnergyType E0 = 1_GeV * std::stof(std::string(argv[3]));
// double theta = 0.;
// auto const thetaRad = theta / 180. * M_PI;
//
// auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
// return sqrt((Elab - m) * (Elab + m));
// };
// HEPMomentumType P0 = elab2plab(E0, mass);
// auto momentumComponents = [](double thetaRad, HEPMomentumType ptot) {
// return std::make_tuple(ptot * sin(thetaRad), 0_eV, -ptot * cos(thetaRad));
// };
//
// auto const [px, py, pz] = momentumComponents(thetaRad, P0);
// auto plab = MomentumVector(rootCS, {px, py, pz});
// std::cout << "input particle: " << beamCode << std::endl;
// std::cout << "input angles: theta=" << theta << std::endl;
// std::cout << "input momentum: " << plab.getComponents() / 1_GeV
// << ", norm = " << plab.getNorm() << std::endl;
//
// auto const observationHeight = 0_km + builder.getEarthRadius();
// auto const injectionHeight = 112.75_km + builder.getEarthRadius();
// auto const t = -observationHeight * cos(thetaRad) +
// sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) +
// static_pow<2>(injectionHeight));
// Point const showerCore{rootCS, 0_m, 0_m, observationHeight};
// Point const injectionPos =
// showerCore + DirectionVector{rootCS, {-sin(thetaRad), 0, cos(thetaRad)}} * t;
//
// std::cout << "point of injection: " << injectionPos.getCoordinates() << std::endl;
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// EnvType env6;
//
// // get a coordinate system
// const CoordinateSystemPtr rootCS6 = env6.getCoordinateSystem();
//
// auto Medium6 = EnvType::createNode<Sphere>(
// Point{rootCS6, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
// auto const props6 = Medium6->setModelProperties<UniRIndex>(
// 1, 1_kg / (1_m * 1_m * 1_m),
// NuclearComposition(
// std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f}));
//
// env6.getUniverse()->addChild(std::move(Medium6));
// // get a unit vector
// Vector<dimensionless_d> v1(rootCS6, {0, 0, 1});
// QuantityVector<ElectricFieldType::dimension_type> v11{10_V / 1_m, 10_V / 1_m, 10_V / 1_m};
...
...
@@ -361,185 +196,185 @@ TEST_CASE("Radio", "[processes]") {
}
// check that I can create working Straight Propagators in different environments
SECTION
(
"Straight Propagator w/ Uniform Refractive Index"
)
{
// create an environment with uniform refractive index of 1
using
UniRIndex
=
UniformRefractiveIndex
<
HomogeneousMedium
<
IRefractiveIndexModel
<
IMediumModel
>>>
;
using
EnvType
=
Environment
<
IRefractiveIndexModel
<
IMediumModel
>>
;
EnvType
env
;
// get a coordinate system
const
CoordinateSystemPtr
rootCS
=
env
.
getCoordinateSystem
();
auto
Medium
=
EnvType
::
createNode
<
Sphere
>
(
Point
{
rootCS
,
0
_m
,
0
_m
,
0
_m
},
1
_km
*
std
::
numeric_limits
<
double
>::
infinity
());
auto
const
props
=
Medium
->
setModelProperties
<
UniRIndex
>
(
1
,
1
_kg
/
(
1
_m
*
1
_m
*
1
_m
),
NuclearComposition
(
std
::
vector
<
Code
>
{
Code
::
Nitrogen
},
std
::
vector
<
float
>
{
1.
f
}));
env
.
getUniverse
()
->
addChild
(
std
::
move
(
Medium
));
// get some points
Point
p0
(
rootCS
,
{
0
_m
,
0
_m
,
0
_m
});
// Point p1(rootCS, {0_m, 0_m, 1_m});
// Point p2(rootCS, {0_m, 0_m, 2_m});
// Point p3(rootCS, {0_m, 0_m, 3_m});
// Point p4(rootCS, {0_m, 0_m, 4_m});
// Point p5(rootCS, {0_m, 0_m, 5_m});
// Point p6(rootCS, {0_m, 0_m, 6_m});
// Point p7(rootCS, {0_m, 0_m, 7_m});
// Point p8(rootCS, {0_m, 0_m, 8_m});
// Point p9(rootCS, {0_m, 0_m, 9_m});
Point
p10
(
rootCS
,
{
0
_m
,
0
_m
,
10
_m
});
// get a unit vector
Vector
<
dimensionless_d
>
v1
(
rootCS
,
{
0
,
0
,
1
});
// // get a geometrical path of points
// Path P1({p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10});
// construct a Straight Propagator given the uniform refractive index environment
StraightPropagator
SP
(
env
);
// store the outcome of the Propagate method to paths_
auto
const
paths_
=
SP
.
propagate
(
p0
,
p10
,
1
_m
);
// perform checks to paths_ components
for
(
auto
const
&
path
:
paths_
)
{
CHECK
((
path
.
total_time_
/
1
_s
)
-
((
34
_m
/
(
3
*
constants
::
c
))
/
1
_s
)
==
Approx
(
0
).
margin
(
absMargin
));
CHECK
(
path
.
average_refractive_index_
==
Approx
(
1
));
CHECK
(
path
.
emit_
.
getComponents
()
==
v1
.
getComponents
());
CHECK
(
path
.
receive_
.
getComponents
()
==
v1
.
getComponents
());
CHECK
(
path
.
R_distance_
==
10
_m
);
// CHECK(std::equal(P1.begin(), P1.end(), path.points_.begin(),[]
// (Point a, Point b) { return (a - b).norm() / 1_m < 1e-5;}));
//TODO:THINK ABOUT THE POINTS IN THE SIGNALPATH.H
}
CHECK
(
paths_
.
size
()
==
1
);
}
SECTION
(
"Straight Propagator w/ Exponential Refractive Index"
)
{
// logging::set_level(logging::level::info);
// corsika_logger->set_pattern("[%n:%^%-8l%$] custom pattern: %v");
// create an environment with exponential refractive index (n_0 = 1 & lambda = 0)
using
ExpoRIndex
=
ExponentialRefractiveIndex
<
HomogeneousMedium
<
IRefractiveIndexModel
<
IMediumModel
>>>
;
using
EnvType
=
Environment
<
IRefractiveIndexModel
<
IMediumModel
>>
;
EnvType
env1
;
//get another coordinate system
const
CoordinateSystemPtr
rootCS1
=
env1
.
getCoordinateSystem
();
auto
Medium1
=
EnvType
::
createNode
<
Sphere
>
(
Point
{
rootCS1
,
0
_m
,
0
_m
,
0
_m
},
1
_km
*
std
::
numeric_limits
<
double
>::
infinity
());
auto
const
props1
=
Medium1
->
setModelProperties
<
ExpoRIndex
>
(
1
,
0
/
1
_m
,
1
_kg
/
(
1
_m
*
1
_m
*
1
_m
),
NuclearComposition
(
std
::
vector
<
Code
>
{
Code
::
Nitrogen
},
std
::
vector
<
float
>
{
1.
f
}));
env1
.
getUniverse
()
->
addChild
(
std
::
move
(
Medium1
));
// get some points
Point
pp0
(
rootCS1
,
{
0
_m
,
0
_m
,
0
_m
});
// Point pp1(rootCS1, {0_m, 0_m, 1_m});
// Point pp2(rootCS1, {0_m, 0_m, 2_m});
// Point pp3(rootCS1, {0_m, 0_m, 3_m});
// Point pp4(rootCS1, {0_m, 0_m, 4_m});
// Point pp5(rootCS1, {0_m, 0_m, 5_m});
// Point pp6(rootCS1, {0_m, 0_m, 6_m});
// Point pp7(rootCS1, {0_m, 0_m, 7_m});
// Point pp8(rootCS1, {0_m, 0_m, 8_m});
// Point pp9(rootCS1, {0_m, 0_m, 9_m});
Point
pp10
(
rootCS1
,
{
0
_m
,
0
_m
,
10
_m
});
// get a unit vector
Vector
<
dimensionless_d
>
vv1
(
rootCS1
,
{
0
,
0
,
1
});
// construct a Straight Propagator given the exponential refractive index environment
StraightPropagator
SP1
(
env1
);
// store the outcome of Propagate method to paths1_
auto
const
paths1_
=
SP1
.
propagate
(
pp0
,
pp10
,
1
_m
);
// perform checks to paths1_ components (this is just a sketch for now)
for
(
auto
const
&
path
:
paths1_
)
{
CHECK
(
(
path
.
total_time_
/
1
_s
)
-
((
34
_m
/
(
3
*
constants
::
c
))
/
1
_s
)
==
Approx
(
0
).
margin
(
absMargin
)
);
CHECK
(
path
.
average_refractive_index_
==
Approx
(
1
)
);
CHECK
(
path
.
emit_
.
getComponents
()
==
vv1
.
getComponents
()
);
CHECK
(
path
.
receive_
.
getComponents
()
==
vv1
.
getComponents
()
);
CHECK
(
path
.
R_distance_
==
10
_m
);
}
CHECK
(
paths1_
.
size
()
==
1
);
/*
* A second environment with another exponential refractive index
*/
// create an environment with exponential refractive index (n_0 = 2 & lambda = 2)
using
ExpoRIndex
=
ExponentialRefractiveIndex
<
HomogeneousMedium
<
IRefractiveIndexModel
<
IMediumModel
>>>
;
using
EnvType
=
Environment
<
IRefractiveIndexModel
<
IMediumModel
>>
;
EnvType
env2
;
//get another coordinate system
const
CoordinateSystemPtr
rootCS2
=
env2
.
getCoordinateSystem
();
auto
Medium2
=
EnvType
::
createNode
<
Sphere
>
(
Point
{
rootCS2
,
0
_m
,
0
_m
,
0
_m
},
1
_km
*
std
::
numeric_limits
<
double
>::
infinity
());
auto
const
props2
=
Medium2
->
setModelProperties
<
ExpoRIndex
>
(
2
,
2
/
1
_m
,
1
_kg
/
(
1
_m
*
1
_m
*
1
_m
),
NuclearComposition
(
std
::
vector
<
Code
>
{
Code
::
Nitrogen
},
std
::
vector
<
float
>
{
1.
f
}));
env2
.
getUniverse
()
->
addChild
(
std
::
move
(
Medium2
));
// get some points
Point
ppp0
(
rootCS2
,
{
0
_m
,
0
_m
,
0
_m
});
Point
ppp10
(
rootCS2
,
{
0
_m
,
0
_m
,
10
_m
});
// get a unit vector
Vector
<
dimensionless_d
>
vvv1
(
rootCS2
,
{
0
,
0
,
1
});
// construct a Straight Propagator given the exponential refractive index environment
StraightPropagator
SP2
(
env2
);
// store the outcome of Propagate method to paths1_
auto
const
paths2_
=
SP2
.
propagate
(
ppp0
,
ppp10
,
1
_m
);
// perform checks to paths1_ components (this is just a sketch for now)
for
(
auto
const
&
path
:
paths2_
)
{
CHECK
(
(
path
.
total_time_
/
1
_s
)
-
((
3.177511688
_m
/
(
3
*
constants
::
c
))
/
1
_s
)
==
Approx
(
0
).
margin
(
absMargin
)
);
CHECK
(
path
.
average_refractive_index_
==
Approx
(
0.210275935
)
);
CHECK
(
path
.
emit_
.
getComponents
()
==
vvv1
.
getComponents
()
);
CHECK
(
path
.
receive_
.
getComponents
()
==
vvv1
.
getComponents
()
);
CHECK
(
path
.
R_distance_
==
10
_m
);
}
CHECK
(
paths2_
.
size
()
==
1
);
}
//
SECTION("Straight Propagator w/ Uniform Refractive Index") {
//
//
// create an environment with uniform refractive index of 1
//
using UniRIndex =
//
UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>;
//
//
using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
//
EnvType env;
//
//
// get a coordinate system
//
const CoordinateSystemPtr rootCS = env.getCoordinateSystem();
//
//
auto Medium = EnvType::createNode<Sphere>(
//
Point{rootCS, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
//
auto const props = Medium->setModelProperties<UniRIndex>(
//
1, 1_kg / (1_m * 1_m * 1_m),
//
NuclearComposition(
//
std::vector<Code>{Code::Nitrogen},
//
std::vector<float>{1.f}));
//
//
env.getUniverse()->addChild(std::move(Medium));
//
//
// get some points
//
Point p0(rootCS, {0_m, 0_m, 0_m});
//
// Point p1(rootCS, {0_m, 0_m, 1_m});
//
// Point p2(rootCS, {0_m, 0_m, 2_m});
//
// Point p3(rootCS, {0_m, 0_m, 3_m});
//
// Point p4(rootCS, {0_m, 0_m, 4_m});
//
// Point p5(rootCS, {0_m, 0_m, 5_m});
//
// Point p6(rootCS, {0_m, 0_m, 6_m});
//
// Point p7(rootCS, {0_m, 0_m, 7_m});
//
// Point p8(rootCS, {0_m, 0_m, 8_m});
//
// Point p9(rootCS, {0_m, 0_m, 9_m});
//
Point p10(rootCS, {0_m, 0_m, 10_m});
//
//
// get a unit vector
//
Vector<dimensionless_d> v1(rootCS, {0, 0, 1});
//
//
// // get a geometrical path of points
//
// Path P1({p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10});
//
//
// construct a Straight Propagator given the uniform refractive index environment
//
StraightPropagator SP(env);
//
//
// store the outcome of the Propagate method to paths_
//
auto const paths_ = SP.propagate(p0, p10, 1_m);
//
//
// perform checks to paths_ components
//
for (auto const& path : paths_) {
//
CHECK((path.total_time_ / 1_s) - ((34_m / (3 * constants::c)) / 1_s) ==
//
Approx(0).margin(absMargin));
//
CHECK(path.average_refractive_index_ == Approx(1));
//
CHECK(path.emit_.getComponents() == v1.getComponents());
//
CHECK(path.receive_.getComponents() == v1.getComponents());
//
CHECK(path.R_distance_ == 10_m);
//
// CHECK(std::equal(P1.begin(), P1.end(), path.points_.begin(),[]
//
// (Point a, Point b) { return (a - b).norm() / 1_m < 1e-5;}));
//
//TODO:THINK ABOUT THE POINTS IN THE SIGNALPATH.H
//
}
//
//
CHECK(paths_.size() == 1);
//
}
//
//
SECTION("Straight Propagator w/ Exponential Refractive Index") {
//
//
// logging::set_level(logging::level::info);
//
// corsika_logger->set_pattern("[%n:%^%-8l%$] custom pattern: %v");
//
//
// create an environment with exponential refractive index (n_0 = 1 & lambda = 0)
//
using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium
//
<IRefractiveIndexModel<IMediumModel>>>;
//
//
using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
//
EnvType env1;
//
//
//get another coordinate system
//
const CoordinateSystemPtr rootCS1 = env1.getCoordinateSystem();
//
//
auto Medium1 = EnvType::createNode<Sphere>(
//
Point{rootCS1, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
//
auto const props1 =
//
Medium1
//
->setModelProperties<ExpoRIndex>( 1, 0 / 1_m,
//
1_kg / (1_m * 1_m * 1_m),
//
NuclearComposition(
//
std::vector<Code>{Code::Nitrogen},
//
std::vector<float>{1.f}));
//
//
env1.getUniverse()->addChild(std::move(Medium1));
//
//
// get some points
//
Point pp0(rootCS1, {0_m, 0_m, 0_m});
//
// Point pp1(rootCS1, {0_m, 0_m, 1_m});
//
// Point pp2(rootCS1, {0_m, 0_m, 2_m});
//
// Point pp3(rootCS1, {0_m, 0_m, 3_m});
//
// Point pp4(rootCS1, {0_m, 0_m, 4_m});
//
// Point pp5(rootCS1, {0_m, 0_m, 5_m});
//
// Point pp6(rootCS1, {0_m, 0_m, 6_m});
//
// Point pp7(rootCS1, {0_m, 0_m, 7_m});
//
// Point pp8(rootCS1, {0_m, 0_m, 8_m});
//
// Point pp9(rootCS1, {0_m, 0_m, 9_m});
//
Point pp10(rootCS1, {0_m, 0_m, 10_m});
//
//
// get a unit vector
//
Vector<dimensionless_d> vv1(rootCS1, {0, 0, 1});
//
//
// construct a Straight Propagator given the exponential refractive index environment
//
StraightPropagator SP1(env1);
//
//
// store the outcome of Propagate method to paths1_
//
auto const paths1_ = SP1.propagate(pp0, pp10, 1_m);
//
//
// perform checks to paths1_ components (this is just a sketch for now)
//
for (auto const& path :paths1_) {
//
CHECK( (path.total_time_ / 1_s) - ((34_m / (3 * constants::c)) / 1_s)
//
== Approx(0).margin(absMargin) );
//
CHECK( path.average_refractive_index_ == Approx(1) );
//
CHECK( path.emit_.getComponents() == vv1.getComponents() );
//
CHECK( path.receive_.getComponents() == vv1.getComponents() );
//
CHECK( path.R_distance_ == 10_m );
//
}
//
//
CHECK( paths1_.size() == 1 );
//
//
/*
//
* A second environment with another exponential refractive index
//
*/
//
//
// create an environment with exponential refractive index (n_0 = 2 & lambda = 2)
//
using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium
//
<IRefractiveIndexModel<IMediumModel>>>;
//
//
using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
//
EnvType env2;
//
//
//get another coordinate system
//
const CoordinateSystemPtr rootCS2 = env2.getCoordinateSystem();
//
//
auto Medium2 = EnvType::createNode<Sphere>(
//
Point{rootCS2, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
//
auto const props2 =
//
Medium2
//
->setModelProperties<ExpoRIndex>( 2, 2 / 1_m,
//
1_kg / (1_m * 1_m * 1_m),
//
NuclearComposition(
//
std::vector<Code>{Code::Nitrogen},
//
std::vector<float>{1.f}));
//
//
env2.getUniverse()->addChild(std::move(Medium2));
//
//
// get some points
//
Point ppp0(rootCS2, {0_m, 0_m, 0_m});
//
Point ppp10(rootCS2, {0_m, 0_m, 10_m});
//
//
// get a unit vector
//
Vector<dimensionless_d> vvv1(rootCS2, {0, 0, 1});
//
//
// construct a Straight Propagator given the exponential refractive index environment
//
StraightPropagator SP2(env2);
//
//
// store the outcome of Propagate method to paths1_
//
auto const paths2_ = SP2.propagate(ppp0, ppp10, 1_m);
//
//
// perform checks to paths1_ components (this is just a sketch for now)
//
for (auto const& path :paths2_) {
//
CHECK( (path.total_time_ / 1_s) - ((3.177511688_m / (3 * constants::c)) / 1_s)
//
== Approx(0).margin(absMargin) );
//
CHECK( path.average_refractive_index_ == Approx(0.210275935) );
//
CHECK( path.emit_.getComponents() == vvv1.getComponents() );
//
CHECK( path.receive_.getComponents() == vvv1.getComponents() );
//
CHECK( path.R_distance_ == 10_m );
//
}
//
//
CHECK( paths2_.size() == 1 );
//
//
}
// SECTION("ZHS process") {
// // first step is to construct an environment for the propagation (uni index)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment