-
Antonio Augusto Alves Junior authored
[refactory-2020] Updating PRNG dependent code. Singleton class updated to enable building and running tests
Antonio Augusto Alves Junior authored[refactory-2020] Updating PRNG dependent code. Singleton class updated to enable building and running tests
cascade_proton_example.cpp 5.16 KiB
/*
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/modules/BetheBlochPDG.hpp>
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/Pythia8.hpp>
#include <corsika/modules/Sibyll.hpp>
#include <corsika/modules/StackInspector.hpp>
#include <corsika/modules/TrackWriter.hpp>
#include <corsika/modules/TrackingLine.hpp>
#include <corsika/setup/SetupEnvironment.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <corsika/media/Environment.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <iostream>
#include <limits>
#include <typeinfo>
using namespace corsika;
using namespace corsika::setup;
using namespace corsika::units::si;
using namespace std;
//
// The example main program for a particle cascade
//
int main() {
feenableexcept(FE_INVALID);
// initialize random number sequence(s)
corsika::RNGManager::getInstance().registerRandomStream("cascade");
// setup environment, geometry
using EnvType = Environment<setup::IEnvironmentModel>;
EnvType env;
auto& universe = *(env.GetUniverse());
auto theMedium =
EnvType::CreateNode<Sphere>(Point{env.GetCoordinateSystem(), 0_m, 0_m, 0_m},
1_km * std::numeric_limits<double>::infinity());
using MyHomogeneousModel = HomogeneousMedium<IMediumModel>;
theMedium->SetModelProperties<MyHomogeneousModel>(
1_kg / (1_m * 1_m * 1_m),
NuclearComposition(std::vector<corsika::Code>{corsika::Code::Hydrogen},
std::vector<float>{(float)1.}));
universe.AddChild(std::move(theMedium));
const CoordinateSystem& rootCS = env.GetCoordinateSystem();
// setup particle stack, and add primary particle
setup::Stack stack;
stack.Clear();
const Code beamCode = Code::Proton;
const HEPMassType mass = corsika::Proton::GetMass();
const HEPEnergyType E0 = 100_GeV;
double theta = 0.;
double phi = 0.;
{
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt(Elab * Elab - m * m);
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const [px, py, pz] =
momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0);
auto plab = corsika::MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << " phi=" << phi << endl;
cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl;
Point pos(rootCS, 0_m, 0_m, 0_m);
stack.AddParticle(
std::tuple<corsika::Code, units::si::HEPEnergyType, corsika::MomentumVector,
corsika::Point, units::si::TimeType>{beamCode, E0, plab, pos, 0_ns});
}
// setup processes, decays and interactions
tracking_line::TrackingLine tracking;
stack_inspector::StackInspector<setup::Stack> stackInspect(1, true, E0);
const std::vector<corsika::Code> trackedHadrons = {
corsika::Code::PiPlus, corsika::Code::PiMinus, corsika::Code::KPlus,
corsika::Code::KMinus, corsika::Code::K0Long, corsika::Code::K0Short};
corsika::RNGManager::getInstance().registerRandomStream("s_rndm");
corsika::RNGManager::getInstance().registerRandomStream("pythia");
// corsika::sibyll::Interaction sibyll(env);
corsika::pythia8::Interaction pythia;
// corsika::sibyll::NuclearInteraction sibyllNuc(env, sibyll);
// corsika::sibyll::Decay decay(trackedHadrons);
corsika::pythia8::Decay decay(trackedHadrons);
corsika::particle_cut::ParticleCut cut(20_GeV);
// corsika::RNGManager::getInstance().registerRandomStream("HadronicElasticModel");
// corsika::HadronicElasticModel::HadronicElasticInteraction
// hadronicElastic(env);
corsika::track_writer::TrackWriter trackWriter("tracks.dat");
// assemble all processes into an ordered process list
// auto sequence = sibyll << decay << hadronicElastic << cut << trackWriter;
auto sequence = pythia << decay << cut << trackWriter << stackInspect;
// cout << "decltype(sequence)=" << type_id_with_cvr<decltype(sequence)>().pretty_name()
// << "\n";
// define air shower object, run simulation
corsika::Cascade EAS(env, tracking, sequence, stack);
EAS.Init();
EAS.Run();
cout << "Result: E0=" << E0 / 1_GeV << endl;
cut.ShowResults();
const HEPEnergyType Efinal =
cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy();
cout << "total energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1.) * 100 << endl;
}