-
Maximilian Reininghaus authoredMaximilian Reininghaus authored
testUrQMD.cc 6.88 KiB
/*
* (c) Copyright 2019 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/process/urqmd/UrQMD.h>
#include <corsika/random/RNGManager.h>
#include <corsika/geometry/Point.h>
#include <corsika/geometry/RootCoordinateSystem.h>
#include <corsika/geometry/Vector.h>
#include <corsika/units/PhysicalConstants.h>
#include <corsika/units/PhysicalUnits.h>
#include <corsika/utl/CorsikaFenv.h>
#include <corsika/particles/ParticleProperties.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/environment/Environment.h>
#include <corsika/environment/HomogeneousMedium.h>
#include <corsika/environment/NuclearComposition.h>
#include <tuple>
#include <utility>
#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do this in one
// cpp file
#include <catch2/catch.hpp>
using namespace corsika;
using namespace corsika::process::UrQMD;
using namespace corsika::units::si;
template <typename TStackView>
auto sumCharge(TStackView const& view) {
int totalCharge = 0;
for (auto const& p : view) { totalCharge += particles::GetChargeNumber(p.GetPID()); }
return totalCharge;
}
auto setupEnvironment(particles::Code vTargetCode) {
// setup environment, geometry
auto env = std::make_unique<environment::Environment<environment::IMediumModel>>();
auto& universe = *(env->GetUniverse());
const geometry::CoordinateSystem& cs = env->GetCoordinateSystem();
auto theMedium =
environment::Environment<environment::IMediumModel>::CreateNode<geometry::Sphere>(
geometry::Point{cs, 0_m, 0_m, 0_m},
1_km * std::numeric_limits<double>::infinity());
using MyHomogeneousModel = environment::HomogeneousMedium<environment::IMediumModel>;
theMedium->SetModelProperties<MyHomogeneousModel>(
1_kg / (1_m * 1_m * 1_m),
environment::NuclearComposition(std::vector<particles::Code>{vTargetCode},
std::vector<float>{1.}));
auto const* nodePtr = theMedium.get();
universe.AddChild(std::move(theMedium));
return std::make_tuple(std::move(env), &cs, nodePtr);
}
template <typename TNodeType>
auto setupStack(int vA, int vZ, HEPEnergyType vMomentum, TNodeType* vNodePtr,
geometry::CoordinateSystem const& cs) {
auto stack = std::make_unique<setup::Stack>();
auto constexpr mN = corsika::units::constants::nucleonMass;
geometry::Point const origin(cs, {0_m, 0_m, 0_m});
corsika::stack::MomentumVector const pLab(cs, {vMomentum, 0_GeV, 0_GeV});
HEPEnergyType const E0 =
sqrt(units::si::detail::static_pow<2>(mN * vA) + pLab.squaredNorm());
auto particle =
stack->AddParticle(std::tuple<particles::Code, units::si::HEPEnergyType,
corsika::stack::MomentumVector, geometry::Point,
units::si::TimeType, unsigned short, unsigned short>{
particles::Code::Nucleus, E0, pLab, origin, 0_ns, vA, vZ});
particle.SetNode(vNodePtr);
return std::make_tuple(
std::move(stack),
std::make_unique<decltype(corsika::stack::SecondaryView(particle))>(particle));
}
template <typename TNodeType>
auto setupStack(particles::Code vProjectileType, HEPEnergyType vMomentum,
TNodeType* vNodePtr, geometry::CoordinateSystem const& cs) {
auto stack = std::make_unique<setup::Stack>();
geometry::Point const origin(cs, {0_m, 0_m, 0_m});
corsika::stack::MomentumVector const pLab(cs, {vMomentum, 0_GeV, 0_GeV});
HEPEnergyType const E0 =
sqrt(units::si::detail::static_pow<2>(particles::GetMass(vProjectileType)) +
pLab.squaredNorm());
auto particle = stack->AddParticle(
std::tuple<particles::Code, units::si::HEPEnergyType,
corsika::stack::MomentumVector, geometry::Point, units::si::TimeType>{
vProjectileType, E0, pLab, origin, 0_ns});
particle.SetNode(vNodePtr);
return std::make_tuple(
std::move(stack),
std::make_unique<decltype(corsika::stack::SecondaryView(particle))>(particle));
}
TEST_CASE("UrQMD") {
SECTION("conversion") {
REQUIRE_THROWS(process::UrQMD::ConvertFromUrQMD(106, 0));
REQUIRE(process::UrQMD::ConvertFromUrQMD(101, 0) == particles::Code::Pi0);
REQUIRE(process::UrQMD::ConvertToUrQMD(particles::Code::PiPlus) ==
std::make_pair<int, int>(101, 2));
}
feenableexcept(FE_INVALID);
corsika::random::RNGManager::GetInstance().RegisterRandomStream("UrQMD");
UrQMD urqmd;
SECTION("cross sections") {
auto [env, csPtr, nodePtr] = setupEnvironment(particles::Code::Unknown);
auto const& cs = *csPtr;
particles::Code validProjectileCodes[] = {
particles::Code::PiPlus, particles::Code::PiMinus, particles::Code::Proton,
particles::Code::Neutron, particles::Code::KPlus, particles::Code::KMinus,
particles::Code::K0, particles::Code::K0Bar};
for (auto code : validProjectileCodes) {
auto [stack, view] = setupStack(code, 100_GeV, nodePtr, cs);
REQUIRE(stack->GetSize() == 1);
// simple check whether the cross-section is non-vanishing
REQUIRE(urqmd.GetCrossSection(view->GetProjectile(), particles::Code::Proton) /
1_mb >
0);
REQUIRE(urqmd.GetCrossSection(view->GetProjectile(), particles::Code::Nitrogen) /
1_mb >
0);
REQUIRE(urqmd.GetCrossSection(view->GetProjectile(), particles::Code::Oxygen) /
1_mb >
0);
REQUIRE(urqmd.GetCrossSection(view->GetProjectile(), particles::Code::Argon) /
1_mb >
0);
}
}
SECTION("nucleon projectile") {
auto [env, csPtr, nodePtr] = setupEnvironment(particles::Code::Oxygen);
unsigned short constexpr A = 4, Z = 2;
auto [stackPtr, secViewPtr] = setupStack(A, Z, 400_GeV, nodePtr, *csPtr);
// must be assigned to variable, cannot be used as rvalue?!
auto projectile = secViewPtr->GetProjectile();
[[maybe_unused]] process::EProcessReturn const ret = urqmd.DoInteraction(projectile);
REQUIRE(sumCharge(*secViewPtr) ==
Z + particles::GetChargeNumber(particles::Code::Oxygen));
}
SECTION("\"special\" projectile") {
auto [env, csPtr, nodePtr] = setupEnvironment(particles::Code::Oxygen);
auto [stackPtr, secViewPtr] =
setupStack(particles::Code::K0, 400_GeV, nodePtr, *csPtr);
// must be assigned to variable, cannot be used as rvalue?!
auto projectile = secViewPtr->GetProjectile();
[[maybe_unused]] process::EProcessReturn const ret = urqmd.DoInteraction(projectile);
REQUIRE(sumCharge(*secViewPtr) ==
particles::GetChargeNumber(particles::Code::K0) +
particles::GetChargeNumber(particles::Code::Oxygen));
}
}