-
ralfulrich authoredralfulrich authored
Interaction.cc 13.17 KiB
/*
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/process/sibyll/Interaction.h>
#include <corsika/environment/Environment.h>
#include <corsika/environment/NuclearComposition.h>
#include <corsika/geometry/FourVector.h>
#include <corsika/process/sibyll/ParticleConversion.h>
#include <corsika/process/sibyll/SibStack.h>
#include <corsika/process/sibyll/sibyll2.3d.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/utl/COMBoost.h>
#include <tuple>
using std::cout;
using std::endl;
using std::tuple;
using namespace corsika;
using namespace corsika::setup;
using SetupParticle = setup::Stack::StackIterator;
using SetupProjectile = setup::StackView::StackIterator;
using Track = Trajectory;
namespace corsika::process::sibyll {
Interaction::Interaction() {}
Interaction::~Interaction() {
cout << "Sibyll::Interaction n=" << count_ << " Nnuc=" << nucCount_ << endl;
}
void Interaction::Init() {
using random::RNGManager;
// initialize Sibyll
if (!initialized_) {
sibyll_ini_();
initialized_ = true;
}
}
void Interaction::SetAllStable() {
for (int i = 0; i < 99; ++i) s_csydec_.idb[i] = -1 * abs(s_csydec_.idb[i]);
}
tuple<units::si::CrossSectionType, units::si::CrossSectionType>
Interaction::GetCrossSection(const particles::Code BeamId,
const particles::Code TargetId,
const units::si::HEPEnergyType CoMenergy) const {
using namespace units::si;
double sigProd, sigEla, dummy, dum1, dum3, dum4;
double dumdif[3];
const int iBeam = process::sibyll::GetSibyllXSCode(BeamId);
if (!IsValidCoMEnergy(CoMenergy)) {
throw std::runtime_error(
"Interaction: GetCrossSection: CoM energy outside range for Sibyll!");
}
const double dEcm = CoMenergy / 1_GeV;
if (particles::IsNucleus(TargetId)) {
const int iTarget = particles::GetNucleusA(TargetId);
if (iTarget > maxTargetMassNumber_ || iTarget == 0)
throw std::runtime_error(
"Sibyll target outside range. Only nuclei with A<18 are allowed.");
sib_sigma_hnuc_(iBeam, iTarget, dEcm, sigProd, dummy, sigEla);
} else if (TargetId == particles::Proton::GetCode()) {
sib_sigma_hp_(iBeam, dEcm, dum1, sigEla, sigProd, dumdif, dum3, dum4);
} else {
// no interaction in sibyll possible, return infinite cross section? or throw?
sigProd = std::numeric_limits<double>::infinity();
sigEla = std::numeric_limits<double>::infinity();
}
return std::make_tuple(sigProd * 1_mb, sigEla * 1_mb);
}
template <>
units::si::GrammageType Interaction::GetInteractionLength(
SetupParticle const& vP) const {
using namespace units;
using namespace units::si;
using namespace geometry;
// coordinate system, get global frame of reference
CoordinateSystem& rootCS =
RootCoordinateSystem::GetInstance().GetRootCoordinateSystem();
const particles::Code corsikaBeamId = vP.GetPID();
// beam particles for sibyll : 1, 2, 3 for p, pi, k
// read from cross section code table
const bool kInteraction = process::sibyll::CanInteract(corsikaBeamId);
// FOR NOW: assume target is at rest
MomentumVector pTarget(rootCS, {0_GeV, 0_GeV, 0_GeV});
// total momentum and energy
HEPEnergyType Elab = vP.GetEnergy() + constants::nucleonMass;
MomentumVector pTotLab(rootCS, {0_GeV, 0_GeV, 0_GeV});
pTotLab += vP.GetMomentum();
pTotLab += pTarget;
auto const pTotLabNorm = pTotLab.norm();
// calculate cm. energy
const HEPEnergyType ECoM = sqrt(
(Elab + pTotLabNorm) * (Elab - pTotLabNorm)); // binomial for numerical accuracy
cout << "Interaction: LambdaInt: \n"
<< " input energy: " << vP.GetEnergy() / 1_GeV << endl
<< " beam can interact:" << kInteraction << endl
<< " beam pid:" << vP.GetPID() << endl;
// TODO: move limits into variables
// FR: removed && Elab >= 8.5_GeV
if (kInteraction && IsValidCoMEnergy(ECoM)) {
// get target from environment
/*
the target should be defined by the Environment,
ideally as full particle object so that the four momenta
and the boosts can be defined..
*/
auto const* currentNode = vP.GetNode();
const auto& mediumComposition =
currentNode->GetModelProperties().GetNuclearComposition();
si::CrossSectionType weightedProdCrossSection = mediumComposition.WeightedSum(
[=](particles::Code targetID) -> si::CrossSectionType {
return std::get<0>(this->GetCrossSection(corsikaBeamId, targetID, ECoM));
});
cout << "Interaction: "
<< "IntLength: weighted CrossSection (mb): " << weightedProdCrossSection / 1_mb
<< endl;
// calculate interaction length in medium
GrammageType const int_length = mediumComposition.GetAverageMassNumber() *
units::constants::u / weightedProdCrossSection;
cout << "Interaction: "
<< "interaction length (g/cm2): " << int_length / (0.001_kg) * 1_cm * 1_cm
<< endl;
return int_length;
}
return std::numeric_limits<double>::infinity() * 1_g / (1_cm * 1_cm);
}
/**
In this function SIBYLL is called to produce one event. The
event is copied (and boosted) into the shower lab frame.
*/
template <>
process::EProcessReturn Interaction::DoInteraction(SetupProjectile& vP) {
using namespace utl;
using namespace units;
using namespace units::si;
using namespace geometry;
const auto corsikaBeamId = vP.GetPID();
cout << "ProcessSibyll: "
<< "DoInteraction: " << corsikaBeamId << " interaction? "
<< process::sibyll::CanInteract(corsikaBeamId) << endl;
if (particles::IsNucleus(corsikaBeamId)) {
// nuclei handled by different process, this should not happen
throw std::runtime_error("Nuclear projectile are not handled by SIBYLL!");
}
if (process::sibyll::CanInteract(corsikaBeamId)) {
// position and time of interaction, not used in Sibyll
Point const pOrig = vP.GetPosition();
TimeType const tOrig = vP.GetTime();
// define projectile
HEPEnergyType const eProjectileLab = vP.GetEnergy();
auto const pProjectileLab = vP.GetMomentum();
const CoordinateSystem& originalCS = pProjectileLab.GetCoordinateSystem();
// define target
// for Sibyll is always a single nucleon
// FOR NOW: target is always at rest
const auto eTargetLab = 0_GeV + constants::nucleonMass;
const auto pTargetLab = MomentumVector(originalCS, 0_GeV, 0_GeV, 0_GeV);
const FourVector PtargLab(eTargetLab, pTargetLab);
cout << "Interaction: ebeam lab: " << eProjectileLab / 1_GeV << endl
<< "Interaction: pbeam lab: " << pProjectileLab.GetComponents() / 1_GeV
<< endl;
cout << "Interaction: etarget lab: " << eTargetLab / 1_GeV << endl
<< "Interaction: ptarget lab: " << pTargetLab.GetComponents() / 1_GeV << endl;
const FourVector PprojLab(eProjectileLab, pProjectileLab);
// define target kinematics in lab frame
// define boost to and from CoM frame
// CoM frame definition in Sibyll projectile: +z
COMBoost const boost(PprojLab, constants::nucleonMass);
auto const& csPrime = boost.GetRotatedCS();
// just for show:
// boost projecticle
auto const PprojCoM = boost.toCoM(PprojLab);
// boost target
auto const PtargCoM = boost.toCoM(PtargLab);
cout << "Interaction: ebeam CoM: " << PprojCoM.GetTimeLikeComponent() / 1_GeV
<< endl
<< "Interaction: pbeam CoM: "
<< PprojCoM.GetSpaceLikeComponents().GetComponents(csPrime) / 1_GeV << endl;
cout << "Interaction: etarget CoM: " << PtargCoM.GetTimeLikeComponent() / 1_GeV
<< endl
<< "Interaction: ptarget CoM: "
<< PtargCoM.GetSpaceLikeComponents().GetComponents(csPrime) / 1_GeV << endl;
cout << "Interaction: position of interaction: " << pOrig.GetCoordinates() << endl;
cout << "Interaction: time: " << tOrig << endl;
HEPEnergyType Etot = eProjectileLab + eTargetLab;
MomentumVector Ptot = vP.GetMomentum();
// invariant mass, i.e. cm. energy
HEPEnergyType Ecm = sqrt(Etot * Etot - Ptot.squaredNorm());
// sample target mass number
auto const* currentNode = vP.GetNode();
auto const& mediumComposition =
currentNode->GetModelProperties().GetNuclearComposition();
// get cross sections for target materials
/*
Here we read the cross section from the interaction model again,
should be passed from GetInteractionLength if possible
*/
//#warning reading interaction cross section again, should not be necessary
auto const& compVec = mediumComposition.GetComponents();
std::vector<CrossSectionType> cross_section_of_components(compVec.size());
for (size_t i = 0; i < compVec.size(); ++i) {
auto const targetId = compVec[i];
const auto [sigProd, sigEla] = GetCrossSection(corsikaBeamId, targetId, Ecm);
[[maybe_unused]] const auto& dummy_sigEla = sigEla;
cross_section_of_components[i] = sigProd;
}
const auto targetCode =
mediumComposition.SampleTarget(cross_section_of_components, RNG_);
cout << "Interaction: target selected: " << targetCode << endl;
/*
FOR NOW: allow nuclei with A<18 or protons only.
when medium composition becomes more complex, approximations will have to be
allowed air in atmosphere also contains some Argon.
*/
int targetSibCode = -1;
if (IsNucleus(targetCode)) targetSibCode = GetNucleusA(targetCode);
if (targetCode == particles::Proton::GetCode()) targetSibCode = 1;
cout << "Interaction: sibyll code: " << targetSibCode << endl;
if (targetSibCode > maxTargetMassNumber_ || targetSibCode < 1)
throw std::runtime_error(
"Sibyll target outside range. Only nuclei with A<18 or protons are "
"allowed.");
// beam id for sibyll
const int kBeam = process::sibyll::ConvertToSibyllRaw(corsikaBeamId);
cout << "Interaction: "
<< " DoInteraction: E(GeV):" << eProjectileLab / 1_GeV
<< " Ecm(GeV): " << Ecm / 1_GeV << endl;
if (Ecm > GetMaxEnergyCoM())
throw std::runtime_error("Interaction::DoInteraction: CoM energy too high!");
// FR: removed eProjectileLab < 8.5_GeV ||
if (Ecm < GetMinEnergyCoM()) {
cout << "Interaction: "
<< " DoInteraction: should have dropped particle.. "
<< "THIS IS AN ERROR" << endl;
throw std::runtime_error("energy too low for SIBYLL");
} else {
count_++;
// Sibyll does not know about units..
const double sqs = Ecm / 1_GeV;
// running sibyll, filling stack
sibyll_(kBeam, targetSibCode, sqs);
// print final state
int print_unit = 6;
sib_list_(print_unit);
nucCount_ += get_nwounded() - 1;
// add particles from sibyll to stack
// link to sibyll stack
SibStack ss;
MomentumVector Plab_final(originalCS, {0.0_GeV, 0.0_GeV, 0.0_GeV});
HEPEnergyType Elab_final = 0_GeV, Ecm_final = 0_GeV;
for (auto& psib : ss) {
// abort on particles that have decayed in Sibyll. Should not happen!
if (psib.HasDecayed())
throw std::runtime_error("found particle that decayed in SIBYLL!");
// transform 4-momentum to lab. frame
// note that the momentum needs to be rotated back
auto const tmp = psib.GetMomentum().GetComponents();
auto const pCoM = Vector<hepmomentum_d>(csPrime, tmp);
HEPEnergyType const eCoM = psib.GetEnergy();
auto const Plab = boost.fromCoM(FourVector(eCoM, pCoM));
auto const pid = process::sibyll::ConvertFromSibyll(psib.GetPID());
// add to corsika stack
auto pnew = vP.AddSecondary(
tuple<particles::Code, units::si::HEPEnergyType, stack::MomentumVector,
geometry::Point, units::si::TimeType>{
pid, Plab.GetTimeLikeComponent(), Plab.GetSpaceLikeComponents(), pOrig,
tOrig});
Plab_final += pnew.GetMomentum();
Elab_final += pnew.GetEnergy();
Ecm_final += psib.GetEnergy();
}
cout << "conservation (all GeV):" << endl
<< "Ecm_initial=" << Ecm / 1_GeV << " Ecm_final=" << Ecm_final / 1_GeV
<< endl
<< "Elab_initial=" << eProjectileLab / 1_GeV
<< " Elab_final=" << Elab_final / 1_GeV
<< " diff (%)=" << (Elab_final / eProjectileLab / get_nwounded() - 1) * 100
<< endl
<< "Plab_initial=" << (pProjectileLab / 1_GeV).GetComponents()
<< ", Plab_final=" << (Plab_final / 1_GeV).GetComponents() << endl;
}
}
return process::EProcessReturn::eOk;
}
} // namespace corsika::process::sibyll