-
Marvin Gottowik authoredMarvin Gottowik authored
testGeometry.cpp 21.79 KiB
/*
* (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the 3-clause BSD license.
* See file LICENSE for a full version of the license.
*/
#include <catch2/catch_all.hpp>
#include <cmath>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/geometry/Box.hpp>
#include <corsika/framework/geometry/SeparationPlane.hpp>
#include <corsika/framework/geometry/CoordinateSystem.hpp>
#include <corsika/framework/geometry/Helix.hpp>
#include <corsika/framework/geometry/LeapFrogTrajectory.hpp>
#include <corsika/framework/geometry/Line.hpp>
#include <corsika/framework/geometry/Path.hpp>
#include <corsika/framework/geometry/Point.hpp>
#include <corsika/framework/geometry/RootCoordinateSystem.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/geometry/StraightTrajectory.hpp>
#include <tests/common/SetupStack.hpp>
#include <PhysicalUnitsCatch2.hpp> // namespace corsike::testing
using namespace corsika;
using namespace corsika::testing;
using Catch::Approx;
double constexpr absMargin = 1.0e-8;
TEST_CASE("Geometry CoordinateSystems") {
logging::set_level(logging::level::info);
CoordinateSystemPtr rootCS = get_root_CoordinateSystem();
QuantityVector<length_d> const coordinates{0_m, 0_m, 0_m};
Point p1(rootCS, coordinates);
CORSIKA_LOG_INFO("Point p1={}", p1);
QuantityVector<magnetic_flux_density_d> components{1. * tesla, 0. * tesla, 0. * tesla};
Vector<magnetic_flux_density_d> v1(rootCS, components);
CORSIKA_LOG_INFO("Vector<magnetic_flux_density_d> v1={}", v1);
CHECK((p1.getCoordinates() - coordinates).getNorm().magnitude() ==
Approx(0).margin(absMargin));
CHECK((p1.getCoordinates(rootCS) - coordinates).getNorm().magnitude() ==
Approx(0).margin(absMargin));
SECTION("basic operations") {
auto testV0 = v1 * 6;
CHECK(testV0.getNorm() / tesla == Approx(6));
auto testV1 = 6 * v1;
CHECK(testV1.getNorm() / tesla == Approx(6));
auto testV2 = 6_m * v1;
CHECK(testV2.getNorm() / (tesla * meter) == Approx(6));
auto testV3 = v1 * 6_m;
CHECK(testV3.getNorm() / (tesla * meter) == Approx(6));
}
SECTION("point") {
Point const p00 = Point(rootCS, {0_m, 0_m, 0_m});
Point const p01 = Point(rootCS, {3_m, 3_m, 3_m});
Point const p02 = Point(rootCS, {1_m, -5_m, 6_m});
LengthVector const d01 = p00 - p01;
LengthVector const d12 = p01 - p02;
LengthVector const d20 = p02 - p00;
CHECK(d12.getNorm() / (p01 - p02).getNorm() == Approx(1));
CHECK(d12.getNorm() / distance(p01, p02) == Approx(1));
CHECK(d12.getNorm() / distance(p02, p01) == Approx(1));
}
SECTION("translations") {
QuantityVector<length_d> const translationVector{0_m, 4_m, 0_m};
CORSIKA_LOG_INFO("QuantityVector<length_d> translationVector={}", translationVector);
CoordinateSystemPtr translatedCS = make_translation(rootCS, translationVector);
CHECK(translatedCS->getReferenceCS() == rootCS);
CHECK((p1.getCoordinates(translatedCS) + translationVector).getNorm().magnitude() ==
Approx(0).margin(absMargin));
// Vectors are not subject to translations
CHECK((v1.getComponents(rootCS) - v1.getComponents(translatedCS))
.getNorm()
.magnitude() == Approx(0).margin(absMargin));
Point p2(translatedCS, {0_m, 0_m, 0_m});
CHECK(((p2 - p1).getComponents() - translationVector).getNorm().magnitude() ==
Approx(0).margin(absMargin));
CHECK(p2.getX(rootCS) == 0_m);
CHECK(p2.getY(rootCS) == 4_m);
CHECK(p2.getZ(rootCS) == 0_m);
CHECK(p2.getX(translatedCS) == 0_m);
CHECK(p2.getY(translatedCS) == 0_m);
CHECK(p2.getZ(translatedCS) == 0_m);
Vector<magnetic_flux_density_d> v2(translatedCS, components);
CHECK((v2 - v1).getNorm() / 1_T == Approx(0));
}
SECTION("multiple translations") {
QuantityVector<length_d> const tv1{0_m, 5_m, 0_m};
CoordinateSystemPtr cs2 = make_translation(rootCS, tv1);
QuantityVector<length_d> const tv2{3_m, 0_m, 0_m};
CoordinateSystemPtr cs3 = make_translation(rootCS, tv2);
QuantityVector<length_d> const tv3{0_m, 0_m, 2_m};
CoordinateSystemPtr cs4 = make_translation(cs3, tv3);
CHECK(cs4->getReferenceCS()->getReferenceCS() == rootCS);
CHECK(get_transformation(*cs3.get(), *cs2.get())
.isApprox(make_translation(rootCS, {3_m, -5_m, 0_m})->getTransform()));
CHECK(get_transformation(*cs2.get(), *cs3.get())
.isApprox(make_translation(rootCS, {-3_m, +5_m, 0_m})->getTransform()));
}
SECTION("rotations") {
QuantityVector<length_d> const axis{0_m, 0_m, 1_km};
double const angle = 90. / 180. * M_PI;
CoordinateSystemPtr rotatedCS = make_rotation(rootCS, axis, angle);
CHECK(rotatedCS->getReferenceCS() == rootCS);
CHECK(v1.getComponents(rotatedCS)[1].magnitude() ==
Approx((-1. * tesla).magnitude()));
// vector norm invariant under rotation
CHECK(v1.getComponents(rotatedCS).getNorm().magnitude() ==
Approx(v1.getComponents(rootCS).getNorm().magnitude()));
// this is not possible
QuantityVector<length_d> const axis_invalid{0_m, 0_m, 0_km};
CHECK_THROWS(make_rotation(rootCS, axis_invalid, angle));
}
SECTION("multiple rotations") {
QuantityVector<length_d> const zAxis{0_m, 0_m, 1_km};
QuantityVector<length_d> const yAxis{0_m, 7_nm, 0_m};
QuantityVector<length_d> const xAxis{2_m, 0_nm, 0_m};
QuantityVector<magnetic_flux_density_d> components{1. * tesla, 2. * tesla,
3. * tesla};
Vector<magnetic_flux_density_d> v1(rootCS, components);
double const angle = 90. / 180. * M_PI;
CoordinateSystemPtr rotated1 = make_rotation(rootCS, zAxis, angle);
CoordinateSystemPtr rotated2 = make_rotation(rotated1, yAxis, angle);
CoordinateSystemPtr rotated3 = make_rotation(rotated2, zAxis, -angle);
CoordinateSystemPtr combined = make_rotation(rootCS, xAxis, -angle);
auto comp1 = v1.getComponents(rotated3);
auto comp3 = v1.getComponents(combined);
CHECK((comp1 - comp3).getNorm().magnitude() == Approx(0).margin(absMargin));
}
SECTION("RotateToZ positive") {
Vector const v{rootCS, 0_m, 1_m, 1_m};
auto const csPrime = make_rotationToZ(rootCS, v);
Vector const zPrime{csPrime, 0_m, 0_m, 5_m};
Vector const xPrime{csPrime, 5_m, 0_m, 0_m};
Vector const yPrime{csPrime, 0_m, 5_m, 0_m};
CHECK(xPrime.dot(v).magnitude() == Approx(0).margin(absMargin));
CHECK(yPrime.dot(v).magnitude() == Approx(0).margin(absMargin));
CHECK((zPrime.dot(v) / 1_m).magnitude() == Approx(5 * sqrt(2)));
CHECK(zPrime.getComponents(rootCS)[1].magnitude() ==
Approx(zPrime.getComponents(rootCS)[2].magnitude()));
CHECK(zPrime.getComponents(rootCS)[0].magnitude() == Approx(0));
CHECK(xPrime.getComponents(rootCS).getEigenVector().dot(
yPrime.getComponents(rootCS).getEigenVector()) == Approx(0));
CHECK(zPrime.getComponents(rootCS).getEigenVector().dot(
xPrime.getComponents(rootCS).getEigenVector()) == Approx(0));
CHECK(yPrime.getComponents(rootCS).getEigenVector().dot(
zPrime.getComponents(rootCS).getEigenVector()) == Approx(0));
CHECK(yPrime.getComponents(rootCS).getEigenVector().dot(
yPrime.getComponents(rootCS).getEigenVector()) ==
Approx((5_m * 5_m).magnitude()));
CHECK(xPrime.getComponents(rootCS).getEigenVector().dot(
xPrime.getComponents(rootCS).getEigenVector()) ==
Approx((5_m * 5_m).magnitude()));
CHECK(zPrime.getComponents(rootCS).getEigenVector().dot(
zPrime.getComponents(rootCS).getEigenVector()) ==
Approx((5_m * 5_m).magnitude()));
}
SECTION("RotateToZ negative") {
Vector const v{rootCS, 0_m, 0_m, -1_m};
auto const csPrime = make_rotationToZ(rootCS, v);
Vector const zPrime{csPrime, 0_m, 0_m, 5_m};
Vector const xPrime{csPrime, 5_m, 0_m, 0_m};
Vector const yPrime{csPrime, 0_m, 5_m, 0_m};
CHECK(zPrime.dot(v).magnitude() > 0);
CHECK(xPrime.getComponents(rootCS).getEigenVector().dot(
v.getComponents().getEigenVector()) == Approx(0));
CHECK(yPrime.getComponents(rootCS).getEigenVector().dot(
v.getComponents().getEigenVector()) == Approx(0));
CHECK(xPrime.getComponents(rootCS).getEigenVector().dot(
yPrime.getComponents(rootCS).getEigenVector()) == Approx(0));
CHECK(zPrime.getComponents(rootCS).getEigenVector().dot(
xPrime.getComponents(rootCS).getEigenVector()) == Approx(0));
CHECK(yPrime.getComponents(rootCS).getEigenVector().dot(
zPrime.getComponents(rootCS).getEigenVector()) == Approx(0));
CHECK(yPrime.getComponents(rootCS).getEigenVector().dot(
yPrime.getComponents(rootCS).getEigenVector()) ==
Approx((5_m * 5_m).magnitude()));
CHECK(xPrime.getComponents(rootCS).getEigenVector().dot(
xPrime.getComponents(rootCS).getEigenVector()) ==
Approx((5_m * 5_m).magnitude()));
CHECK(zPrime.getComponents(rootCS).getEigenVector().dot(
zPrime.getComponents(rootCS).getEigenVector()) ==
Approx((5_m * 5_m).magnitude()));
}
}
TEST_CASE("Geometry CoordinateSystem-hirarchy") {
CoordinateSystemPtr rootCS = get_root_CoordinateSystem();
CHECK(get_transformation(*rootCS.get(), *rootCS.get())
.isApprox(EigenTransform::Identity()));
// define the root coordinate system
CoordinateSystemPtr root = get_root_CoordinateSystem();
Point const p1(root, {0_m, 0_m, 0_m}); // the origin of the root CS
CHECK(p1.getX(root) == 0_m);
CHECK(p1.getY(root) == 0_m);
CHECK(p1.getZ(root) == 0_m);
// root -> cs2
CoordinateSystemPtr cs2 = make_translation(root, {0_m, 0_m, 1_m});
Point const p2(cs2, {0_m, 0_m, -1_m});
// root -> cs2 -> cs3
CoordinateSystemPtr cs3 = make_translation(cs2, {0_m, 0_m, -1_m});
Point const p3(cs3, {0_m, 0_m, 0_m});
// root -> cs2 -> cs4
CoordinateSystemPtr cs4 = make_translation(cs2, {0_m, 0_m, -1_m});
Point const p4(cs4, {0_m, 0_m, 0_m});
// root -> cs2 -> cs4 -> cs5
CoordinateSystemPtr cs5 =
make_rotation(cs4, QuantityVector<length_d>{1_m, 0_m, 0_m}, 90 * degree_angle);
Point const p5(cs5, {0_m, 0_m, 0_m});
// root -> cs6
CoordinateSystemPtr cs6 =
make_rotation(root, QuantityVector<length_d>{1_m, 0_m, 0_m}, 90 * degree_angle);
Point const p6(cs6, {0_m, 0_m, 0_m}); // the origin of the root CS
// all points should be on top of each other
CHECK_FALSE(
get_transformation(*root.get(), *cs2.get()).isApprox(EigenTransform::Identity()));
CHECK(get_transformation(*root.get(), *cs3.get()).isApprox(EigenTransform::Identity()));
CHECK(get_transformation(*root.get(), *cs4.get()).isApprox(EigenTransform::Identity()));
CHECK(get_transformation(*cs5.get(), *cs6.get()).isApprox(EigenTransform::Identity()));
CHECK((p1 - p2).getNorm().magnitude() == Approx(0).margin(absMargin));
CHECK((p1 - p3).getNorm().magnitude() == Approx(0).margin(absMargin));
CHECK((p1 - p4).getNorm().magnitude() == Approx(0).margin(absMargin));
CHECK((p1 - p5).getNorm().magnitude() == Approx(0).margin(absMargin));
CHECK((p1 - p6).getNorm().magnitude() == Approx(0).margin(absMargin));
}
TEST_CASE("Geometry Sphere") {
CoordinateSystemPtr const& rootCS = get_root_CoordinateSystem();
Point center(rootCS, {0_m, 3_m, 4_m});
Sphere sphere(center, 5_m);
SECTION("getCenter") {
CHECK((sphere.getCenter().getCoordinates(rootCS) -
QuantityVector<length_d>(0_m, 3_m, 4_m))
.getNorm()
.magnitude() == Approx(0).margin(absMargin));
CHECK(sphere.getRadius() / 5_m == Approx(1));
}
SECTION("isInside") {
CHECK_FALSE(sphere.contains(Point(rootCS, {100_m, 0_m, 0_m})));
CHECK(sphere.contains(Point(rootCS, {2_m, 3_m, 4_m})));
}
}
TEST_CASE("Geometry Box") {
CoordinateSystemPtr const& rootCS = get_root_CoordinateSystem();
auto initialCS = make_translation(rootCS, {0_m, 0_m, 5_m});
Point center = Point(initialCS, {0_m, 0_m, 0_m});
Box box(initialCS, 4_m, 5_m, 6_m);
SECTION("getCenter") {
CHECK((box.getCenter().getCoordinates(rootCS) - center.getCoordinates(rootCS))
.getNorm()
.magnitude() == Approx(0).margin(absMargin));
CHECK(box.getX() / 4_m == Approx(1));
CHECK(box.getY() / 5_m == Approx(1));
CHECK(box.getZ() / 6_m == Approx(1));
}
SECTION("isInside") {
CHECK_FALSE(box.contains(Point(rootCS, {4.5_m, 0_m, 0_m})));
CHECK(box.contains(Point(rootCS, {0_m, 4.5_m, 0_m})));
}
SECTION("internal coordinate") {
CoordinateSystemPtr const internalCS = box.getCoordinateSystem();
auto coordinate = box.getCenter().getCoordinates(internalCS);
CHECK(coordinate.getX() / 1_m == Approx(0));
CHECK(coordinate.getY() / 1_m == Approx(0));
CHECK(coordinate.getZ() / 1_m == Approx(0));
}
SECTION("rotation") {
QuantityVector<length_d> const axis_z{0_m, 0_m, 1_m};
box.rotate(axis_z, 90);
CHECK(box.contains(Point(rootCS, {4.5_m, 0_m, 0_m})));
CHECK_FALSE(box.contains(Point(rootCS, {0_m, 4.5_m, 0_m})));
}
SECTION("from different coordinate") {
QuantityVector<length_d> const axis_z{0_m, 0_m, 1_m};
auto rotatedCS = make_rotation(initialCS, axis_z, 90);
Point center(rootCS, {0_m, 0_m, 5_m});
Box box(rotatedCS, 4_m, 5_m, 6_m);
CHECK(box.contains(Point(rootCS, {4.5_m, 0_m, 0_m})));
CHECK_FALSE(box.contains(Point(rootCS, {0_m, 4.5_m, 0_m})));
}
}
TEST_CASE("Geometry SeparationPlane") {
CoordinateSystemPtr const& rootCS = get_root_CoordinateSystem();
Point const planeCenter = Point(rootCS, {0_m, 0_m, 0_m});
SECTION("constructor") {
DirectionVector const planeNorm{rootCS, {0, 0, 1}};
SeparationPlane const sepPlane{Plane(planeCenter, planeNorm)};
CHECK(sepPlane.asString() != "");
}
SECTION("isInside") {
DirectionVector const planeNorm{rootCS, {0, 0, 1}};
SeparationPlane const sepPlane{Plane(planeCenter, planeNorm)};
CHECK_FALSE(sepPlane.contains(Point(rootCS, {0_m, 0_m, 1_m})));
CHECK_FALSE(sepPlane.contains(Point(rootCS, {1_m, 0_m, 1_m})));
CHECK_FALSE(sepPlane.contains(Point(rootCS, {-1_m, 0_m, 1_m})));
CHECK_FALSE(sepPlane.contains(Point(rootCS, {0_m, 1_m, 1_m})));
CHECK_FALSE(sepPlane.contains(Point(rootCS, {0_m, -1_m, 1_m})));
CHECK(sepPlane.contains(Point(rootCS, {0_m, 0_m, -1_m})));
CHECK(sepPlane.contains(Point(rootCS, {1_m, 0_m, -1_m})));
CHECK(sepPlane.contains(Point(rootCS, {-1_m, 0_m, -1_m})));
CHECK(sepPlane.contains(Point(rootCS, {0_m, 1_m, -1_m})));
CHECK(sepPlane.contains(Point(rootCS, {0_m, -1_m, -1_m})));
}
SECTION("getPlane") {
DirectionVector const planeNorm{rootCS, {0, 0, 1}};
SeparationPlane const sepPlane{Plane(planeCenter, planeNorm)};
auto planeCheck = sepPlane.getPlane();
}
}
TEST_CASE("Geometry Trajectories") {
CoordinateSystemPtr rootCS = get_root_CoordinateSystem();
Point r0(rootCS, {0_m, 0_m, 0_m});
// Create a particle and and a stack so we can test .getTime() method
const Code particle{Code::Electron};
test::Stack stack;
// the mass of the particle
const auto pmass{get_mass(particle)};
// set an arbitrary energy value
const HEPEnergyType E0{1_TeV};
// compute the corresponding momentum
const HEPMomentumType P0{sqrt(E0 * E0 - pmass * pmass)};
// create the momentum vector
const auto plab{MomentumVector(rootCS, {0_GeV, 0_GeV, P0})};
// create an arbitrary location of the particle
const Point pos(rootCS, 50_m, 10_m, 80_m);
// add it finally to the stack
auto const particle1{stack.addParticle(
std::make_tuple(particle, calculate_kinetic_energy(plab.getNorm(), pmass),
plab.normalized(), pos, 0_ns))};
SECTION("Line") {
SpeedType const V0 = 3_m / second;
VelocityVector v0(rootCS, {V0, 0_m / second, 0_m / second});
Line const line(r0, v0);
CHECK(
(line.getPosition(2_s).getCoordinates() - QuantityVector<length_d>(6_m, 0_m, 0_m))
.getNorm()
.magnitude() == Approx(0).margin(absMargin));
CHECK((line.getPositionFromArclength(4_m).getCoordinates() -
QuantityVector<length_d>(4_m, 0_m, 0_m))
.getNorm()
.magnitude() == Approx(0).margin(absMargin));
CHECK((line.getPosition(7_s) -
line.getPositionFromArclength(line.getArcLength(0_s, 7_s)))
.getNorm()
.magnitude() == Approx(0).margin(absMargin));
CHECK((line.getTimeFromArclength(10_m) / (10_m / v0.getNorm()) == Approx(1)));
auto const t = 1_s;
StraightTrajectory base(line, t);
CHECK(line.getPosition(t).getCoordinates() == base.getPosition(1.).getCoordinates());
// test the getTime() method for straight trajectory
CHECK(base.getTime(particle1, 1) / 1_s == Approx(1));
CHECK((base.getDirection(0).getComponents(rootCS) -
QuantityVector<dimensionless_d>{1, 0, 0})
.getNorm() == Approx(0).margin(absMargin));
base.setDuration(0_s);
CHECK(base.getDuration() / 1_s == Approx(0));
CHECK(base.getLength() / 1_m == Approx(0));
base.setDuration(10_s);
CHECK(base.getDuration() / 1_s == Approx(10));
StraightTrajectory base2(line,
std::numeric_limits<TimeType::value_type>::infinity() * 1_s);
base2.setDuration(10_s);
CHECK(base2.getDuration() / 1_s == Approx(10));
// test the getTime() method for straight trajectory
CHECK(base2.getTime(particle1, 0) / 1_s == Approx(0));
base2.setLength(1.3_m);
CHECK(base2.getDuration() * V0 / meter == Approx(1.3));
CHECK(base2.getLength() / meter == Approx(1.3));
}
SECTION("Helix") {
VelocityVector const vPar(rootCS, {0_m / second, 0_m / second, 4_m / second});
VelocityVector const vPerp(rootCS, {3_m / second, 0_m / second, 0_m / second});
auto const T = 1_s;
auto const omegaC = 2 * M_PI / T;
Helix const helix(r0, omegaC, vPar, vPerp);
CHECK((helix.getPosition(1_s).getCoordinates() -
QuantityVector<length_d>(0_m, 0_m, 4_m))
.getNorm()
.magnitude() == Approx(0).margin(absMargin));
CHECK((helix.getPosition(0.25_s).getCoordinates() -
QuantityVector<length_d>(-3_m / (2 * M_PI), -3_m / (2 * M_PI), 1_m))
.getNorm()
.magnitude() == Approx(0).margin(absMargin));
CHECK((helix.getPosition(7_s) -
helix.getPositionFromArclength(helix.getArcLength(0_s, 7_s)))
.getNorm()
.magnitude() == Approx(0).margin(absMargin));
}
SECTION("LeapFrog Trajectory") {
// Create a velocity Vector
VelocityVector v0(rootCS, {5e+2_m / second, 5e+2_m / second, 5e+2_m / second});
// Create a magnetic filed Vector
Vector B0(rootCS, 5_T, 5_T, 5_T);
// provide a k constant and a random time for the LeapFrog Trajectory
auto const k{1_m * ((1_m) / ((1_s * 1_s) * 1_V))};
auto const t = 1e-12_s;
// construct a LeapFrog Trajectory
LeapFrogTrajectory base(pos, v0, B0, k, t);
// test the getTime() method for trajectories
CHECK((base.getTime(particle1, 1) - t) / 1_s == Approx(0));
CHECK(base.getTime(particle1, 0) / 1_s == Approx(0));
CHECK((base.getTime(particle1, 0) + t) / 1_s == Approx(1e-12));
}
}
TEST_CASE("Distance between points") {
// define a known CS
CoordinateSystemPtr root = get_root_CoordinateSystem();
// define known points
Point p1(root, {0_m, 0_m, 0_m});
Point p2(root, {0_m, 0_m, 5_m});
Point p3(root, {1_m, 0_m, 0_m});
Point p4(root, {5_m, 0_m, 0_m});
Point p5(root, {0_m, 4_m, 0_m});
Point p6(root, {0_m, 5_m, 0_m});
// check distance() function
CHECK(distance(p1, p2) / 1_m == Approx(5));
CHECK(distance(p3, p4) / 1_m == Approx(4));
CHECK(distance(p5, p6) / 1_m == Approx(1));
}
TEST_CASE("Path") {
// define a known CS
CoordinateSystemPtr root = get_root_CoordinateSystem();
// define known points
Point p1(root, {0_m, 0_m, 0_m});
Point p2(root, {0_m, 0_m, 1_m});
Point p3(root, {0_m, 0_m, 2_m});
Point p4(root, {0_m, 0_m, 3_m});
Point p5(root, {0_m, 0_m, 4_m});
// define paths
Path P1(p1);
Path P2({p1, p2});
Path P3({p1, p2, p3});
// define deque that include point(s)
std::deque<Point> l1 = {p1};
std::deque<Point> l2 = {p1, p2};
std::deque<Point> l3 = {p1, p2, p3};
// test the various path constructors
SECTION("Test Constructors") {
// check constructor for one point
CHECK(std::equal(P1.begin(), P1.end(), l1.begin(),
[](Point a, Point b) { return (a - b).getNorm() / 1_m < 1e-5; }));
// check constructor for collection of points
CHECK(std::equal(P3.begin(), P3.end(), l3.begin(),
[](Point a, Point b) { return (a - b).getNorm() / 1_m < 1e-5; }));
}
// test the length and access methods
SECTION("Test getLength() and modifications to Path") {
P1.addToEnd(p2);
P2.removeFromEnd();
// Check modifications to path
CHECK(std::equal(P1.begin(), P1.end(), l2.begin(),
[](Point a, Point b) { return (a - b).getNorm() / 1_m < 1e-5; }));
CHECK(std::equal(P2.begin(), P2.end(), l1.begin(),
[](Point a, Point b) { return (a - b).getNorm() / 1_m < 1e-5; }));
// Check GetStart(), GetEnd(), GetPoint()
CHECK((P3.getEnd() - P3.getStart()).getNorm() / 1_m == Approx(2));
CHECK((P1.getPoint(1) - p2).getNorm() / 1_m == Approx(0));
// Check GetLength()
CHECK(P1.getLength() / 1_m == Approx(1));
CHECK(P2.getLength() / 1_m == Approx(0));
CHECK(P3.getLength() / 1_m == Approx(2));
P2.removeFromEnd();
CHECK(P2.getLength() / 1_m == Approx(0)); // Check the length of an empty path
P3.addToEnd(p4);
P3.addToEnd(p5);
CHECK(P3.getLength() / 1_m == Approx(4));
P3.removeFromEnd();
CHECK(P3.getLength() / 1_m == Approx(3)); // Check RemoveFromEnd() else case
// Check GetNSegments()
CHECK(P3.getNSegments() - 3 == Approx(0));
P3.removeFromEnd();
P3.removeFromEnd();
P3.removeFromEnd();
CHECK(P3.getNSegments() == Approx(0));
}
}