Newer
Older
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/process/hadronic_elastic_model/HadronicElasticModel.h>
#include <corsika/environment/Environment.h>
#include <corsika/environment/NuclearComposition.h>
#include <corsika/geometry/FourVector.h>
#include <corsika/random/ExponentialDistribution.h>
#include <corsika/utl/COMBoost.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <iomanip>
#include <iostream>
using namespace corsika::setup;
using Particle = Stack::ParticleType;
using Track = Trajectory;
namespace corsika::process::HadronicElasticModel {
void HadronicElasticInteraction::Init() {}
HadronicElasticInteraction::HadronicElasticInteraction(
environment::Environment const& env, units::si::CrossSectionType x,
units::si::CrossSectionType y)
: fX(x)
, fY(y)
, fEnvironment(env) {}
template <>
units::si::GrammageType HadronicElasticInteraction::GetInteractionLength(
Particle const& p, Track&) {
using namespace units::si;
if (p.GetPID() == particles::Code::Proton) {
auto const* currentNode =
fEnvironment.GetUniverse()->GetContainingNode(p.GetPosition());
auto const& mediumComposition =
currentNode->GetModelProperties().GetNuclearComposition();
auto const& components = mediumComposition.GetComponents();
auto const& fractions = mediumComposition.GetFractions();
auto const projectileMomentum = p.GetMomentum();
auto const projectileMomentumSquaredNorm = projectileMomentum.squaredNorm();
auto const projectileEnergy = p.GetEnergy();
auto const avgCrossSection = [&]() {
for (size_t i = 0; i < fractions.size(); ++i) {
auto const targetMass = particles::GetMass(components[i]);
auto const s = detail::static_pow<2>(projectileEnergy + targetMass) -
projectileMomentumSquaredNorm;
avgCrossSection += CrossSection(s) * fractions[i];
}
std::cout << "avgCrossSection: " << avgCrossSection / 1_mb << " mb"
<< std::endl;
return avgCrossSection;
}();
auto const avgTargetMassNumber = mediumComposition.GetAverageMassNumber();
GrammageType const interactionLength =
avgTargetMassNumber * units::constants::u / avgCrossSection;
return interactionLength;
} else {
return std::numeric_limits<double>::infinity() * 1_g / (1_cm * 1_cm);
}
}
template <>
process::EProcessReturn HadronicElasticInteraction::DoInteraction(Particle& p, Stack&) {
if (p.GetPID() != particles::Code::Proton) { return process::EProcessReturn::eOk; }
using namespace units::si;
using namespace units::constants;
const auto* currentNode =
fEnvironment.GetUniverse()->GetContainingNode(p.GetPosition());
const auto& composition = currentNode->GetModelProperties().GetNuclearComposition();
const auto& components = composition.GetComponents();
std::vector<units::si::CrossSectionType> cross_section_of_components(
auto const projectileMomentum = p.GetMomentum();
auto const projectileMomentumSquaredNorm = projectileMomentum.squaredNorm();
auto const projectileEnergy = p.GetEnergy();
for (size_t i = 0; i < components.size(); ++i) {
auto const targetMass = particles::GetMass(components[i]);
auto const s = units::si::detail::static_pow<2>(projectileEnergy + targetMass) -
projectileMomentumSquaredNorm;
cross_section_of_components[i] = CrossSection(s);
}
const auto targetCode = composition.SampleTarget(cross_section_of_components, fRNG);
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
auto const targetMass = particles::GetMass(targetCode);
std::uniform_real_distribution phiDist(0., 2 * M_PI);
geometry::FourVector const projectileLab(projectileEnergy, projectileMomentum);
geometry::FourVector const targetLab(
targetMass, geometry::Vector<units::si::hepmomentum_d>(
projectileMomentum.GetCoordinateSystem(), {0_eV, 0_eV, 0_eV}));
utl::COMBoost const boost(projectileLab, targetMass);
auto const projectileCoM = boost.toCoM(projectileLab);
auto const targetCoM = boost.toCoM(targetLab);
auto const pProjectileCoMSqNorm =
projectileCoM.GetSpaceLikeComponents().squaredNorm();
auto const pProjectileCoMNorm = sqrt(pProjectileCoMSqNorm);
auto const eProjectileCoM = projectileCoM.GetTimeLikeComponent();
auto const eTargetCoM = targetCoM.GetTimeLikeComponent();
auto const sqrtS = eProjectileCoM + eTargetCoM;
auto const s = units::si::detail::static_pow<2>(sqrtS);
auto const B = this->B(s);
std::cout << B << std::endl;
random::ExponentialDistribution tDist(1 / B);
auto const absT = [&]() {
decltype(tDist(fRNG)) absT;
auto const maxT = 4 * pProjectileCoMSqNorm;
do {
// |t| cannot become arbitrarily large, max. given by GER eq. (4.16), so we just
// throw again until we have an acceptable value. Note that the formula holds in
// any frame despite of what is stated in the book.
absT = tDist(fRNG);
} while (absT >= maxT);
return absT;
}();
std::cout << "HadronicElasticInteraction: s = " << s * invGeVsq
<< " GeV²; absT = " << absT * invGeVsq
<< " GeV² (max./GeV² = " << 4 * invGeVsq * projectileMomentumSquaredNorm
<< ')' << std::endl;
auto const theta = 2 * asin(sqrt(absT / (4 * pProjectileCoMSqNorm)));
auto const phi = phiDist(fRNG);
auto const projectileScatteredLab = boost.fromCoM(
geometry::FourVector<HEPEnergyType, geometry::Vector<hepmomentum_d>>(
eProjectileCoM,
geometry::Vector<hepmomentum_d>(projectileMomentum.GetCoordinateSystem(),
{pProjectileCoMNorm * sin(theta) * cos(phi),
pProjectileCoMNorm * sin(theta) * sin(phi),
pProjectileCoMNorm * cos(theta)})));
p.SetMomentum(projectileScatteredLab.GetSpaceLikeComponents());
p.SetEnergy(
sqrt(projectileScatteredLab.GetSpaceLikeComponents().squaredNorm() +
units::si::detail::static_pow<2>(particles::GetMass(
p.GetPID())))); // Don't use energy from boost. It can be smaller than
// the momentum due to limited numerical accuracy.
return process::EProcessReturn::eOk;
}
HadronicElasticInteraction::inveV2 HadronicElasticInteraction::B(eV2 s) const {
using namespace units::constants;
auto constexpr b_p = 2.3;
auto const result =
(2 * b_p + 2 * b_p + 4 * pow(s * invGeVsq, gfEpsilon) - 4.2) * invGeVsq;
std::cout << "B(" << s << ") = " << result / invGeVsq << " GeV¯²" << std::endl;
return result;
}
units::si::CrossSectionType HadronicElasticInteraction::CrossSection(
SquaredHEPEnergyType s) const {
using namespace units::si;
using namespace units::constants;
// assuming every target behaves like a proton, fX and fY are universal
CrossSectionType const sigmaTotal =
fX * pow(s * invGeVsq, gfEpsilon) + fY * pow(s * invGeVsq, -gfEta);
// according to Schuler & Sjöstrand, PRD 49, 2257 (1994)
// (we ignore rho because rho^2 is just ~2 %)
auto const sigmaElastic =
units::si::detail::static_pow<2>(sigmaTotal) /
(16 * M_PI * ConvertHEPToSI<CrossSectionType::dimension_type>(B(s)));
std::cout << "HEM sigmaTot = " << sigmaTotal / 1_mb << " mb" << std::endl;
std::cout << "HEM sigmaElastic = " << sigmaElastic / 1_mb << " mb" << std::endl;
} // namespace corsika::process::HadronicElasticModel