Newer
Older
/*
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
/* clang-format off */
// InteractionCounter used boost/histogram, which
// fails if boost/type_traits have been included before. Thus, we have
// to include it first...
#include <corsika/framework/process/InteractionCounter.hpp>
/* clang-format on */
#include <corsika/framework/geometry/Plane.hpp>
#include <corsika/framework/geometry/Sphere.hpp>
#include <corsika/framework/core/Logging.hpp>
#include <corsika/framework/utility/SaveBoostHistogram.hpp>
#include <corsika/framework/process/ProcessSequence.hpp>
#include <corsika/framework/process/SwitchProcessSequence.hpp>
#include <corsika/framework/process/InteractionCounter.hpp>
#include <corsika/framework/random/RNGManager.hpp>
#include <corsika/framework/core/PhysicalUnits.hpp>
#include <corsika/framework/utility/CorsikaFenv.hpp>
#include <corsika/framework/core/Cascade.hpp>
#include <corsika/framework/geometry/PhysicalGeometry.hpp>
#include <corsika/output/OutputManager.hpp>
#include <corsika/output/NoOutput.hpp>
#include <corsika/media/Environment.hpp>
#include <corsika/media/FlatExponential.hpp>
#include <corsika/media/HomogeneousMedium.hpp>
#include <corsika/media/IMagneticFieldModel.hpp>
#include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp>
#include <corsika/media/NuclearComposition.hpp>
#include <corsika/media/MediumPropertyModel.hpp>
#include <corsika/media/UniformMagneticField.hpp>
#include <corsika/media/ShowerAxis.hpp>
#include <corsika/media/SlidingPlanarExponential.hpp>
#include <corsika/modules/BetheBlochPDG.hpp>
#include <corsika/modules/LongitudinalProfile.hpp>
#include <corsika/modules/ObservationPlane.hpp>
#include <corsika/modules/OnShellCheck.hpp>
#include <corsika/modules/StackInspector.hpp>
#include <corsika/modules/TrackWriter.hpp>
#include <corsika/modules/ParticleCut.hpp>
#include <corsika/modules/Pythia8.hpp>
#include <corsika/modules/Sibyll.hpp>
#include <corsika/modules/UrQMD.hpp>
#include <corsika/modules/PROPOSAL.hpp>
#include <corsika/modules/QGSJetII.hpp>
#include <corsika/setup/SetupStack.hpp>
#include <corsika/setup/SetupTrajectory.hpp>
#include <CLI/App.hpp>
#include <CLI/Formatter.hpp>
#include <CLI/Config.hpp>
#include <iomanip>
#include <iostream>
#include <limits>
#include <string>
/*
NOTE, WARNING, ATTENTION
The .../Random.hpppp implement the hooks of external modules to the C8 random
number generator. It has to occur excatly ONCE per linked
executable. If you include the header below multiple times and
link this togehter, it will fail.
*/
using namespace corsika;
using namespace std;
using Particle = setup::Stack::particle_type;
void registerRandomStreams(int seed) {
RNGManager<>::getInstance().registerRandomStream("cascade");
RNGManager<>::getInstance().registerRandomStream("qgsjet");
RNGManager<>::getInstance().registerRandomStream("sibyll");
RNGManager<>::getInstance().registerRandomStream("epos");
RNGManager<>::getInstance().registerRandomStream("pythia");
RNGManager<>::getInstance().registerRandomStream("urqmd");
RNGManager<>::getInstance().registerRandomStream("proposal");
if (seed == 0) {
std::random_device rd;
seed = rd();
CORSIKA_LOG_INFO("random seed (auto) {} ", seed);
} else {
CORSIKA_LOG_INFO("random seed {} ", seed);
}
RNGManager<>::getInstance().setSeed(seed);
}
template <typename T>
using MyExtraEnv = MediumPropertyModel<UniformMagneticField<T>>;
int main(int argc, char** argv) {
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// the main command line description
CLI::App app{"Simulate standard (downgoing) showers with CORSIKA 8."};
// some options that we want to fill in
int A, Z, nevent = 0;
// the following section adds the options to the parser
// we start by definining a sub-group for the primary ID
auto opt_Z = app.add_option("-Z", Z, "Atomic number for primary")
->check(CLI::Range(0, 26))
->group("Primary");
auto opt_A = app.add_option("-A", A, "Atomic mass number for primary")
->needs(opt_Z)
->check(CLI::Range(1, 58))
->group("Primary");
app.add_option("-p,--pdg", "PDG code for primary.")
->excludes(opt_A)
->excludes(opt_Z)
->group("Primary");
// the remainding options
app.add_option("-E,--energy", "Primary energy in GeV")
->required()
->check(CLI::PositiveNumber)
->group("Primary");
app.add_option("-z,--zenith", "Primary zenith angle (deg)")
->required()
->default_val(0.)
->check(CLI::Range(0, 90))
->group("Primary");
app.add_option("-a,--azimuth", "Primary azimuth angle (deg)")
->default_val(0.)
->check(CLI::Range(0, 360))
->group("Primary");
app.add_option("-N,--nevent", nevent, "The number of events/showers to run.")
->required()
->check(CLI::PositiveNumber)
->group("Library/Output");
app.add_option("-f,--filename", "Filename for output library.")
->required()
->default_val("corsika_library")
->check(CLI::NonexistentPath)
->group("Library/Output");
app.add_option("-s,--seed", "The random number seed.")
->check(CLI::NonNegativeNumber)
->group("Misc.");
bool force_interaction = false;
app.add_flag("--force-interaction", force_interaction,
"Force the location of the first interaction.")
app.add_option("-v,--verbosity", "Verbosity level")
->default_str("info")
->check(CLI::IsMember({"warn", "info", "debug", "trace"}))
->group("Misc.");
// parse the command line options into the variables
CLI11_PARSE(app, argc, argv);
(app.count("--verbosity") ? app["--verbosity"]->as<string>() : "info");
if (loglevel == "warn") {
logging::set_level(logging::level::warn);
} else if (loglevel == "info") {
logging::set_level(logging::level::info);
} else if (loglevel == "debug") {
logging::set_level(logging::level::debug);
} else if (loglevel == "trace") {
CORSIKA_LOG_ERROR("trace log level requires a Debug build.");
return 1;
// check that we got either PDG or A/Z
// this can be done with option_groups but the ordering
// gets all messed up
if (app.count("--pdg") == 0) {
if ((app.count("-A") == 0) || (app.count("-Z") == 0)) {
std::cerr << "If --pdg is not provided, then both -A and -Z are required."
<< std::endl;
return 1;
}
}
// initialize random number sequence(s)
registerRandomStreams(app["--seed"]->as<int>());
/* === START: SETUP ENVIRONMENT AND ROOT COORDINATE SYSTEM === */
using EnvType = setup::Environment;
EnvType env;
CoordinateSystemPtr const& rootCS = env.getCoordinateSystem();
Point const center{rootCS, 0_m, 0_m, 0_m};
auto builder = make_layered_spherical_atmosphere_builder<
setup::EnvironmentInterface, MyExtraEnv>::create(center,
constants::EarthRadius::Mean,
Medium::AirDry1Atm,
MagneticFieldVector{rootCS, 0_T,
50_uT, 0_T});
builder.setNuclearComposition(
{{Code::Nitrogen, Code::Oxygen},
{0.7847, 1. - 0.7847}}); // values taken from AIRES manual, Ar removed for now
builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 2_km);
builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km);
builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km);
builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km);
builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km);
/* === END: SETUP ENVIRONMENT AND ROOT COORDINATE SYSTEM === */
Point const ptest{rootCS, 0_m, 0_m, builder.getPlanetRadius() + h};
auto rho =
env.getUniverse()->getContainingNode(ptest)->getModelProperties().getMassDensity(
ptest);
atmout << h / 1_m << " " << rho / 1_kg * cube(1_m) << "\n";
}
atmout.close();
/* === START: CONSTRUCT PRIMARY PARTICLE === */
// parse the primary ID as a PDG or A/Z code
// check if we want to use a PDG code instead
if (app.count("--pdg") > 0) {
beamCode = convert_from_PDG(PDGCode(app["--pdg"]->as<int>()));
} else {
// check manually for proton and neutrons
beamCode = Code::Neutron;
else
beamCode = get_nucleus_code(A, Z);
// particle energy
HEPEnergyType const E0 = 1_GeV * app["--energy"]->as<float>();
// direction of the shower in (theta, phi) space
auto const thetaRad = app["--zenith"]->as<float>() / 180. * M_PI;
auto const phiRad = app["--azimuth"]->as<float>() / 180. * M_PI;
// convert Elab to Plab
HEPMomentumType P0 = sqrt((E0 - mass) * (E0 + mass));
// convert the momentum to the zenith and azimuth angle of the primary
auto const [px, py, pz] =
std::make_tuple(P0 * sin(thetaRad) * cos(phiRad), P0 * sin(thetaRad) * sin(phiRad),
-P0 * cos(thetaRad));
auto plab = MomentumVector(rootCS, {px, py, pz});
/* === END: CONSTRUCT PRIMARY PARTICLE === */
/* === START: CONSTRUCT GEOMETRY === */
auto const observationHeight = 0_km + builder.getPlanetRadius();
auto const injectionHeight = 111.75_km + builder.getPlanetRadius();
auto const t = -observationHeight * cos(thetaRad) +
sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) +
static_pow<2>(injectionHeight));
Point const showerCore{rootCS, 0_m, 0_m, observationHeight};
Point const injectionPos =
showerCore + DirectionVector{rootCS,
{-sin(thetaRad) * cos(phiRad),
-sin(thetaRad) * sin(phiRad), cos(thetaRad)}} *
t;
// we make the axis much longer than the inj-core distance since the
// profile will go beyond the core, depending on zenith angle
ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.2, env};
/* === END: CONSTRUCT GEOMETRY === */
// create the output manager that we then register outputs with
OutputManager output(app["--filename"]->as<std::string>());
/* === START: SETUP PROCESS LIST === */
// corsika::epos::Interaction heModel;
// corsika::qgsjetII::Interaction heModel;
// InteractionCounter heModelCounted(heModel);
corsika::sibyll::Interaction sibyll;
InteractionCounter sibyllCounted(sibyll);
corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
InteractionCounter sibyllNucCounted(sibyllNuc);
auto heModelCounted = make_select([](auto const& p) { return is_nucleus(p.getPID()); },
sibyllNucCounted, sibyllCounted);
corsika::pythia8::Decay decayPythia;
// use sibyll decay routine for decays of particles unknown to pythia
corsika::sibyll::Decay decaySibyll{{
Code::N1440Plus,
Code::N1440MinusBar,
Code::N1440_0,
Code::N1440_0Bar,
Code::N1710Plus,
Code::N1710MinusBar,
Code::N1710_0,
Code::N1710_0Bar,
Code::Pi1300Plus,
Code::Pi1300Minus,
Code::Pi1300_0,
Code::KStar0_1430_0,
Code::KStar0_1430_0Bar,
Code::KStar0_1430_Plus,
Code::KStar0_1430_MinusBar,
}};
HEPEnergyType const emcut = 1_GeV;
HEPEnergyType const hadcut = 1_GeV;
ParticleCut cut(emcut, emcut, hadcut, hadcut, true);
corsika::proposal::Interaction emCascade(env);
InteractionCounter emCascadeCounted(emCascade);
// corsika::proposal::ContinuousProcess emContinuous(env);
BetheBlochPDG emContinuous(showerAxis);
// cut.printThresholds();
InteractionCounter urqmdCounted(urqmd);
StackInspector<setup::Stack> stackInspect(50000, false, E0);
// assemble all processes into an ordered process list
struct EnergySwitch {
HEPEnergyType cutE_;
EnergySwitch(HEPEnergyType cutE)
: cutE_(cutE) {}
bool operator()(const Particle& p) { return (p.getKineticEnergy() < cutE_); }
};
auto hadronSequence = make_select(EnergySwitch(63.1_GeV), urqmdCounted, heModelCounted);
auto decaySequence = make_sequence(decayPythia, decaySibyll);
TrackWriter trackWriter;
output.add("tracks", trackWriter); // register TrackWriter
Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.}));
obsPlane, DirectionVector(rootCS, {1., 0., 0.}));
// register the observation plane with the output
output.add("particles", observationLevel);
// assemble the final process sequence
auto sequence = make_sequence(stackInspect, hadronSequence, decaySequence,
emCascadeCounted, cut, emContinuous, // trackWriter,
observationLevel, longprof);
/* === END: SETUP PROCESS LIST === */
// create the cascade object using the default stack and tracking implementation
setup::Tracking tracking;
setup::Stack stack;
Cascade EAS(env, tracking, sequence, output, stack);
// print our primary parameters all in one place
if (app["--pdg"]->count() > 0) {
CORSIKA_LOG_INFO("Primary PDG ID: {}", app["--pdg"]->as<int>());
} else {
CORSIKA_LOG_INFO("Primary Z/A: {}/{}", Z, A);
}
CORSIKA_LOG_INFO("Primary Energy: {}", E0);
CORSIKA_LOG_INFO("Primary Momentum: {}", P0);
CORSIKA_LOG_INFO("Point of Injection: {}", injectionPos.getCoordinates());
CORSIKA_LOG_INFO("Shower Axis Length: {}", (showerCore - injectionPos).getNorm() * 1.2);
// trigger the output manager to open the library for writing
// loop over each shower
for (int i_shower = 1; i_shower < nevent + 1; i_shower++) {
CORSIKA_LOG_INFO("Shower {} / {} ", i_shower, nevent);
// trigger the start of the outputs for this shower
output.startOfShower();
// directory for outputs
string const outdir(app["--filename"]->as<std::string>());
string const labHist_file = outdir + "/inthist_lab_" + to_string(i_shower) + ".npz";
string const cMSHist_file = outdir + "/inthist_cms_" + to_string(i_shower) + ".npz";
string const longprof_file = outdir + "/longprof_" + to_string(i_shower) + ".txt";
// setup particle stack, and add primary particle
stack.clear();
// add the desired particle to the stack
stack.addParticle(std::make_tuple(beamCode, plab, injectionPos, 0_ns));
// if we want to fix the first location of the shower
if (force_interaction) {
CORSIKA_LOG_INFO("Fixing first interaction at injection point.");
EAS.forceInteraction();
}
EAS.run();
cut.showResults();
// emContinuous.showResults();
observationLevel.showResults();
const HEPEnergyType Efinal = cut.getCutEnergy() + cut.getInvEnergy() +
cut.getEmEnergy() + // emContinuous.getEnergyLost() +
observationLevel.getEnergyGround();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
observationLevel.reset();
cut.reset();
// emContinuous.reset();
// auto const hists = heModelCounted.getHistogram() + urqmdCounted.getHistogram();
auto const hists = sibyllCounted.getHistogram() + sibyllNucCounted.getHistogram() +
urqmdCounted.getHistogram();
save_hist(hists.labHist(), labHist_file, true);
save_hist(hists.CMSHist(), cMSHist_file, true);
longprof.save(longprof_file);
// trigger the output manager to save this shower to disk
// and finalize the output on disk