Newer
Older
// for (auto const& path : paths_) {
// CHECK((path.total_time_ / 1_s) - ((34_m / (3 * constants::c)) / 1_s) ==
// Approx(0).margin(absMargin));
// CHECK(path.average_refractive_index_ == Approx(1));
// CHECK(path.emit_.getComponents() == v1.getComponents());
// CHECK(path.receive_.getComponents() == v1.getComponents());
// CHECK(path.R_distance_ == 10_m);
// // CHECK(std::equal(P1.begin(), P1.end(), path.points_.begin(),[]
// // (Point a, Point b) { return (a - b).norm() / 1_m < 1e-5;}));
// //TODO:THINK ABOUT THE POINTS IN THE SIGNALPATH.H
//
//// std::cout << "path.total_time_: " << path.total_time_ << std::endl;
//// std::cout << "path.average_refractive_index_: " << path.average_refractive_index_ << std::endl;
//// std::cout << "path.emit_: " << path.emit_.getComponents() << std::endl;
//// std::cout << "path.R_distance_: " << path.R_distance_ << std::endl;
//
// }
//
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
// CHECK(paths_.size() == 1);
// }
//
// SECTION("Straight Propagator w/ Exponential Refractive Index") {
//
//// logging::set_level(logging::level::info);
//// corsika_logger->set_pattern("[%n:%^%-8l%$] custom pattern: %v");
//
// // create an environment with exponential refractive index (n_0 = 1 & lambda = 0)
// using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium
// <IRefractiveIndexModel<IMediumModel>>>;
//
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// EnvType env1;
//
// //get another coordinate system
// const CoordinateSystemPtr rootCS1 = env1.getCoordinateSystem();
//
// auto Medium1 = EnvType::createNode<Sphere>(
// Point{rootCS1, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
// auto const props1 =
// Medium1
// ->setModelProperties<ExpoRIndex>( 1, 0 / 1_m,
// 1_kg / (1_m * 1_m * 1_m),
// NuclearComposition(
// std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f}));
//
// env1.getUniverse()->addChild(std::move(Medium1));
//
// // get some points
// Point pp0(rootCS1, {0_m, 0_m, 0_m});
//// Point pp1(rootCS1, {0_m, 0_m, 1_m});
//// Point pp2(rootCS1, {0_m, 0_m, 2_m});
//// Point pp3(rootCS1, {0_m, 0_m, 3_m});
//// Point pp4(rootCS1, {0_m, 0_m, 4_m});
//// Point pp5(rootCS1, {0_m, 0_m, 5_m});
//// Point pp6(rootCS1, {0_m, 0_m, 6_m});
//// Point pp7(rootCS1, {0_m, 0_m, 7_m});
//// Point pp8(rootCS1, {0_m, 0_m, 8_m});
//// Point pp9(rootCS1, {0_m, 0_m, 9_m});
// Point pp10(rootCS1, {0_m, 0_m, 10_m});
//
// // get a unit vector
// Vector<dimensionless_d> vv1(rootCS1, {0, 0, 1});
//
// // construct a Straight Propagator given the exponential refractive index environment
// StraightPropagator SP1(env1);
//
// // store the outcome of Propagate method to paths1_
// auto const paths1_ = SP1.propagate(pp0, pp10, 1_m);
//
// // perform checks to paths1_ components (this is just a sketch for now)
// for (auto const& path :paths1_) {
// CHECK( (path.total_time_ / 1_s) - ((34_m / (3 * constants::c)) / 1_s)
// == Approx(0).margin(absMargin) );
// CHECK( path.average_refractive_index_ == Approx(1) );
// CHECK( path.emit_.getComponents() == vv1.getComponents() );
// CHECK( path.receive_.getComponents() == vv1.getComponents() );
// CHECK( path.R_distance_ == 10_m );
// }
//
// CHECK( paths1_.size() == 1 );
//
// /*
// * A second environment with another exponential refractive index
// */
//
// // create an environment with exponential refractive index (n_0 = 2 & lambda = 2)
// using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium
// <IRefractiveIndexModel<IMediumModel>>>;
//
// using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>;
// EnvType env2;
//
// //get another coordinate system
// const CoordinateSystemPtr rootCS2 = env2.getCoordinateSystem();
//
// auto Medium2 = EnvType::createNode<Sphere>(
// Point{rootCS2, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
//
// auto const props2 =
// Medium2
// ->setModelProperties<ExpoRIndex>( 2, 2 / 1_m,
// 1_kg / (1_m * 1_m * 1_m),
// NuclearComposition(
// std::vector<Code>{Code::Nitrogen},
// std::vector<float>{1.f}));
//
// env2.getUniverse()->addChild(std::move(Medium2));
//
// // get some points
// Point ppp0(rootCS2, {0_m, 0_m, 0_m});
// Point ppp10(rootCS2, {0_m, 0_m, 10_m});
//
// // get a unit vector
// Vector<dimensionless_d> vvv1(rootCS2, {0, 0, 1});
//
// // construct a Straight Propagator given the exponential refractive index environment
// StraightPropagator SP2(env2);
//
// // store the outcome of Propagate method to paths1_
// auto const paths2_ = SP2.propagate(ppp0, ppp10, 1_m);
//
// // perform checks to paths1_ components (this is just a sketch for now)
// for (auto const& path :paths2_) {
// CHECK( (path.total_time_ / 1_s) - ((3.177511688_m / (3 * constants::c)) / 1_s)
// == Approx(0).margin(absMargin) );
// CHECK( path.average_refractive_index_ == Approx(0.210275935) );
// CHECK( path.emit_.getComponents() == vvv1.getComponents() );
// CHECK( path.receive_.getComponents() == vvv1.getComponents() );
// CHECK( path.R_distance_ == 10_m );
// }
//
// CHECK( paths2_.size() == 1 );
} // END: TEST_CASE("Radio", "[processes]")