Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
c $Id: string.f,v 1.18 2003/05/02 11:06:56 weber Exp $
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine stringdec(ityp,iz2,smass,part,ident2,npart)
c
cinput smass : Stringmass
cinput ityp : Particle ID
cinput iz2 : Isospin$_3\cdot 2$
c
coutput part : 4-momenta, 4-position, masses (array)
coutput ident2 : ityp, iz2 (array)
coutput npart : number of outgoing particles
c
c This subroutine performs string fragmentation.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit real*8 (a-h,o-z)
implicit integer (i-n)
PARAMETER(MXPTCL=200)
COMMON/PARTCL/ PPTCL(9,MXPTCL),nptcl,IDENT(MXPTCL),IDCAY(MXPTCL)
include 'comstr.f'
dimension part(9,mxptcl)
dimension ident2(2,mxptcl)
c we call the translation routine
call ityp2id(ityp,iz2,ifa,ifb)
goto 1
cspl... string fragmentation called with quark id's and energy as arguments
entry qstring(ifanew,ifbnew,smass,part,ident2,npart)
ifa=ifanew
ifb=ifbnew
1 continue
smem=smass
c here we call the fragmentation routine. the produced hadrons and their
c properties are returned via the pptcl- and ident-array in the common-block
call string(ifa,ifb,smass)
c here the array pptcl has been filled with nptcl entries (1->nptcl)
c now we translate to uqmd and shift the pptcl- and ident-info to the
c corresponding part- and ident2-arrays of the newpart-common-block:
npart=nptcl
do 2 i=1,nptcl
call id2ityp(ident(i),pptcl(5,i),itypout,iz2out)
ident2(1,i)=itypout
ident2(2,i)=iz2out
smem=smem-pptcl(4,i)
do 3 j=1,9
part(j,i)=pptcl(j,i)
3 continue
2 continue
c check for energy conservation:
ctp060926 if(abs(smem).gt.1.0D-5)then
ctp060926 write(*,*)'! stringdec: energy difference=',smem
ctp060926 write(*,*)'ifa,ifb,smass=',ifa,ifb,smass
ctp060926 endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine strini
c
c output : via common blocks
c
c {\tt strini} calculates mixing angles for the meson-multipletts
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit real*8 (a-h,o-z)
implicit integer (i-n)
include 'options.f'
include 'comres.f'
include 'comstr.f'
real*8 m3
real*8 massit
integer jit
c mixing angles of meson multiplets according to flavor SU(3) quark model:
cspl-0795 these parameters assign the pure u/ubar,d/dbar,s/sbar states
c (e.g. 110,220,330) to the physical particles according to the su(3)
c quark model. The flavor mixing angles are chosen according to quadratic
c Gell-Mann-Okubo mass formula (Review of Particle Properties,
c Phys. Rev D50 (1994) 1319). For the scalar mesons this formula is not
c applicable. We assume an ideal mixing angle (tan(theta)=1/sqrt(2)).
c
c pseudoscalar: theta=-10 deg
c vector : theta= 39 deg
c pseudovector: theta= 51 deg
c tensor : theta= 28 deg
c
real*8 mixang(njspin)
c ideal mixing angles assumed for the last three multiplets
data mixang/-10d0,39d0,35.3d0,51d0,28d0,35.3d0,35.3d0,35.3d0/
c
pi = 4d0*datan2(1d0,1d0)
c calculate 'singlet shift probabilities', e.g. a 11 (u-ubar) state
c can be changed to a 22 (d-dbar) or 33 (s-sbar) state with a certain
c probability. THEN they can be identified with physical hadrons!
do 3 i=1,njspin
mixang(i)=mixang(i)/36d1*2d0*3.1416d0
PMIX1S(1,i)=(dcos(mixang(i))/sqrt(6d0)
& -dsin(mixang(i))/sqrt(3d0))**2
PMIX1S(2,i)=PMIX1S(1,i)
PMIX1S(3,i)=(-(dcos(mixang(i))*2d0/dsqrt(6d0))
& -dsin(mixang(i))/dsqrt(3d0))**2
PMIX2S(1,i)=0.5d0
PMIX2S(2,i)=0.5d0
PMIX2S(3,i)=1d0
ce calculate probabilities of the meson multipletts
ce according to parm=(spin degeneracy)/(average mass) *ctp(50 ff.)
parm(i)=0d0
m3=0d0
do 102 j=0,3
itp=mlt2it(4*(i-1)+j+1)
m3=m3+massit(itp)
jpc=jit(itp)/2
102 continue
parm(i)=parm(i)+(2*jpc+1)/m3*4*CTParam(49+i)
c the mixing-angles are the same for 'string' and 'cluster':
do 2 k=1,3
PMIX1C(k,i)=PMIX1S(k,i)
PMIX2C(k,i)=PMIX2S(k,i)
c write(6,*)'#',pmix1c(k,i)
2 continue
3 continue
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE GAUSPT(PT0,SIGQT)
c
cinput sigqt : Width of Gaussian
c
coutput pt0 : transverse momentum
c
C generate pt with Gaussian
c distribution $\propto pt \exp(-pt^2/sigqt^2)$
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit none
real*8 pt0,sigqt,rnd,ranf
RND=ranf(0)
PT0=SIGQT*SQRT(-DLOG(1.d0-RND))
RETURN
END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE FLAVOR(ID,IFL1,IFL2,IFL3,JSPIN)
c
cinput ID : quarkcode
c
coutput ifl1 : single quarks id
coutput ifl2 : single quarks id
coutput ifl3 : single quarks id
coutput jspin : spin id
c
C THIS SUBROUTINE UNPACKS THE IDENT CODE ID=+/-IJKL
c
C -MESONS:
C I=0, J<=K, +/- IS SIGN FOR J,
C ID=110 FOR PI0, ID=220 FOR ETA, ETC.
c
C -BARYONS:
C I<=J<=K IN GENERAL,
C J<I<K FOR SECOND STATE ANTISYMMETRIC IN (I,J), EG. L = 2130
c
C -DIQUARKS:
C ID=+/-IJ00, I<J FOR DIQUARK COMPOSED OF I,J.
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit real*8 (a-h,o-z)
implicit integer (i-n)
IDABS=IABS(ID)
c extract the single (anti-)quark ids from the hadron id:
I=IDABS/1000
J=MOD(IDABS/100,10)
K=MOD(IDABS/10,10)
JSPIN=MOD(IDABS,10)
c diquarks:
IF(ID.NE.0.AND.MOD(ID,100).EQ.0) GO TO 300
c quarks oder so:
IF(J.EQ.0) GO TO 200
c mesonen:
IF(I.EQ.0) GO TO 100
C..BARYONS:
C..ONLY X,Y BARYONS ARE QQX, QQY, Q=U,D,S.
IFL1=ISIGN(I,ID)
IFL2=ISIGN(J,ID)
IFL3=ISIGN(K,ID)
RETURN
C MESONS
100 CONTINUE
IFL1=0
IFL2=ISIGN(J,ID)
IFL3=ISIGN(K,-ID)
RETURN
200 CONTINUE
IFL1=0
IFL2=0
IFL3=0
JSPIN=0
return
300 IFL1=ISIGN(I,ID)
IFL2=ISIGN(J,ID)
IFL3=0
JSPIN=0
RETURN
END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE STRING(IFL1,IFL2,AMSTR)
c
cinput amstr : stringmass
cinput ifl1 : leading (di)quark (along +Z)
cinput ifl2 : leading (di)quark
c
c output : produced particles via common block ({\tt pptcl})
c
C Hadron production via string fragmentation. masses acc. to Breit
c Wigner distr., incl. production of mesonic and baryonic resonances
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit real*8 (a-h,o-z)
implicit integer (i-n)
COMMON/COMTRY/ NTRIES
PARAMETER(MXPTCL=200)
COMMON/PARTCL/ PPTCL(9,MXPTCL),nptcl,IDENT(MXPTCL),IDCAY(MXPTCL)
include 'comstr.f'
DIMENSION PX1L(2),PY1L(2),PX1(2),PY1(2),PMTS(2),W(2),IFL(2)
LOGICAL DIQBR,SPINT,BACK
DIMENSION VC(3)
DIMENSION PPTL(5,MXPTCL),PPTR(5,MXPTCL),
*IDENTL(MXPTCL),IDENTR(MXPTCL)
COMMON/KAPPA/ XAP
COMMON/COLRET/ LRET
LOGICAL LRET
COMMON/CONSTI/ CONSTI
LOGICAL CONSTI
LOGICAL leading
include 'options.f'
IFLL=0
PXL=0
PYL=0
c..strange quark and charm quark probabilities:
prbs=ctparam(6)
prbc=ctparam(7)
cspl the diquark-suppresion parameter is reduced for small
c string masses (finite size effect) see A. Jahns diploma thesis
if(amstr.le.2.8d0)then
pbars=0.d0
elseif (amstr.le.5d0)then
pbars=((amstr-2.8d0)/2.2d0)**3*ctparam(8)
else
pbars=ctparam(8)
endif
c..some parameters (see input.f)
dmas=ctparam(9)
dmass=ctparam(10)
pardbs=ctparam(25)
sigqts=ctparam(42)
C
C PRBS STRANGENESS SUPPRESSION PARAMETER
C PRBC CHARM SUPPRESSION PARAMETER
PU=1./(2.+PRBS+PRBC)
C
LRET=.FALSE.
C
NREP = 0
DIQBR=.TRUE.
NFIX=0
BACK=.TRUE.
c.. here starts everything (if the string break up didn't work
c.. we start again at this point)
100 I=NFIX
ilead=0
NPR=0
NPL=0
NPTCL=NFIX
c.. nrep=number of tries to break string
NREP=NREP+1
IF(NREP.LT.NTRIES) GO TO 102
LRET=.TRUE.
ctp060926 write(*,*)'!! STRING: no fragmentation.'
return
102 CONTINUE
IFL(1)=IFL1
IFL(2)=IFL2
DO 110 J=1,2
110 W(J)=AMSTR
DO 120 J=1,2
PX1L(J)=0.
PY1L(J)=0.
PX1(J)=0.
120 PY1(J)=0.
C WILL THERE BE ONLY ONE BREAK OR NOT ?
SPINT=.TRUE.
KSPIN=1
IF(MOD(IFL(1),100).EQ.0.AND.MOD(IFL(2),100).EQ.0) GOTO 131
IDR=IDPARS(IFL(1),IFL(2),SPINT,KSPIN)
WEND=(AMASS(IDR)+DMAS)**2
GO TO 151
131 IFCN=1
IF(ranf(0).GT.0.5) IFCN=2
IFLC1=IFCN
IF(IFL(1).LT.0) IFLC1=-IFCN
IDR1=IDPARS(IFL(1),IFLC1,SPINT,KSPIN)
IDR2=IDPARS(IFL(2),-IFLC1,SPINT,KSPIN)
WEND=(AMASS(IDR1)+AMASS(IDR2)+DMAS)**2
151 SPINT=.FALSE.
KSPIN=0
c.. only one break goto 225 is the end of the fragmentation
IF(W(1)*W(2).LE.WEND) GO TO 225
c..the main iteration loop for the fragmentation:
130 I=I+1
IF(I.GT.MXPTCL) GO TO 9999
C CHOOSE SIDE OF BREAK
JSIDE=INT(1.+2.*ranf(0))
IF(JSIDE.EQ.1) NPR=NPR+1
IF(JSIDE.EQ.2) NPL=NPL+1
IF(NPR.GT.MXPTCL.OR.NPL.GT.MXPTCL) GO TO 9999
C IS IFL(JSIDE) A QUARK OR A DIQUARK ? (di-quark-->150)
IF(MOD(IFL(JSIDE),100).EQ.0) GO TO 150
C IFL(JSIDE) IS A QUARK
C NOW WE SELECT Q,QBAR PAIR OR QQ,QQBAR PAIR
DIQBR=.FALSE.
DRND=ranf(0)
c.. do a qq-qqbar pair with certain prob.
IF(DRND.LT.PBARS) GO TO 140
C Q,QBAR PAIR
IFLN=ISIGN(IFLAV(PU,PRBS),-IFL(JSIDE))
GO TO 200
C QQ,QQBAR PAIR
140 IQ1=IFLAV(PU,PRBS)
IQ2=IFLAV(PU,PRBS)
c.. no single-strange diquarks (us,ds)!
cblubb if(max0(iq1,iq2).eq.3.and.min0(iq1,iq2).lt.3)goto 140
c.. suppr. double strange di-quarks(ss) with certain prob. (acc. to ctp 29)
if((IQ1.eq.3.and.IQ2.eq.3)
& .and.ranf(0).gt.CTParam(29))goto 140
IF(IQ1.LE.IQ2) GO TO 145
ISWAP=IQ1
IQ1=IQ2
IQ2=ISWAP
145 IFQQ=1000*IQ1+100*IQ2
IFLN=ISIGN(IFQQ,IFL(JSIDE))
GO TO 200
c..the di-quark part:
C IFL(JSIDE) IS A DIQUARK
C CAN DIQUARK BREAK OR NOT
150 DRND=ranf(0)
IF(DRND.LE. PARDBS) GO TO 190
C DIQUARK BREAK (prob. in PARDBS)
CALL FLAVOR(IFL(JSIDE),IFLD1,IFLD2,IFLD3,JSPIN)
IFLL=IFLD1
IFL(JSIDE)=IFLD2
DRND=ranf(0)
IF(DRND.GE.PARQLS) GO TO 160
IFLL=IFLD2
IFL(JSIDE)=IFLD1
160 DIQBR=.TRUE.
C LEADING QUARK TRANSVERSE MOMENTUM
CALL GAUSPT(PTL0,SIGQTS)
PHI=2.*PI*ranf(0)
PXL=PTL0*COS(PHI)
PYL=PTL0*SIN(PHI)
PX1L(JSIDE)=PX1(JSIDE)
PY1L(JSIDE)=PY1(JSIDE)
PX1(JSIDE)=-PXL
PY1(JSIDE)=-PYL
C Q,QBAR PAIR
IFLN=ISIGN(IFLAV(PU,PRBS),-IFL(JSIDE))
GO TO 200
C DIQUARK DOES NOT BREAK
C Q,QBAR PAIR
190 IFLN=ISIGN(IFLAV(PU,PRBS),IFL(JSIDE))
DIQBR=.FALSE.
C IDENT,MASS AND TRANSVERSE MOMENTUM OF PARTICLE
200 IDENT(I)=IDPARS(IFL(JSIDE),IFLN,SPINT,KSPIN)
PPTCL(5,I)=AMASS(IDENT(I))
SIGQTSN=SIGQTS
IF(MOD(IFLN,100).EQ.0) SIGQTSN=sigqts*ctparam(38)
if(iabs(ifln).eq.3.or.iabs(ifl(jside)).eq.3)
& sigqtsn=sigqts*ctparam(39)
CALL GAUSPT(PT2,SIGQTSN)
c no pt for leading hadron:
leading=.false.
if((JSIDE.EQ.1.and.NPR.eq.1).and.
& (abs(IDENT(I)).eq.1120 .or.abs(IDENT(I)).eq.1220) )then
c & (abs(IDENT(I)).ge.1110))then
leading=.true.
cblu pt2=pt2/2d0
ilead=ilead+1
endif
if((JSIDE.EQ.2.and.NPL.eq.1).and.
& (abs(IDENT(I)).eq.1120 .or.abs(IDENT(I)).eq.1220) )then
c & (abs(IDENT(I)).ge.1110))then
leading=.true.
cblu pt2=pt2/2d0
ilead=ilead+1
endif
c..transverse momentum choosen for the newly produced hadron
PHI=2.*PI*ranf(0)
PX2=PT2*COS(PHI)
PY2=PT2*SIN(PHI)
PPTCL(1,I)=PX1(JSIDE)+PX2
PPTCL(2,I)=PY1(JSIDE)+PY2
C GENERATE Z-momentum
PMTS(3-JSIDE)=AMASS(IABS(IFL(3-JSIDE)))**2
PTS=PPTCL(1,I)**2+PPTCL(2,I)**2
PMTS(JSIDE)=PPTCL(5,I)**2+PTS
IF(PMTS(JSIDE)+PMTS(3-JSIDE).GE.PARRS*W(1)*W(2)) GO TO 100
ZMIN=PMTS(JSIDE)/(W(1)*W(2))
ZMAX=1.-PMTS(3-JSIDE)/(W(1)*W(2))
IF(ZMIN.GE.ZMAX) GO TO 100
C..WARNING: VERY IMPORTANT THE ORDER OF IFL AND IFLN IN ZFRAGS
c.. fraction of momentum acc. to the fragmentation fct.
Z=ZFRAGS(IFL(JSIDE),IFLN,PTS,ZMIN,ZMAX,leading)
PPTCL(3,I)=0.5*(Z*W(JSIDE)-PMTS(JSIDE)/
*(Z*W(JSIDE)))*(-1.)**(JSIDE+1)
PPTCL(4,I)=0.5*(Z*W(JSIDE)+PMTS(JSIDE)/(Z*W(JSIDE)))
IDCAY(I)=0
IF(.NOT.(JSIDE.EQ.1)) GO TO 282
IDENTR(NPR)=IDENT(I)
PPTR(1,NPR)=PPTCL(1,I)
PPTR(2,NPR)=PPTCL(2,I)
PPTR(3,NPR)=PPTCL(3,I)
PPTR(4,NPR)=PPTCL(4,I)
PPTR(5,NPR)=PPTCL(5,I)
282 IF(.NOT.(JSIDE.EQ.2)) GO TO 283
IDENTL(NPL)=IDENT(I)
PPTL(1,NPL)=PPTCL(1,I)
PPTL(2,NPL)=PPTCL(2,I)
PPTL(3,NPL)=PPTCL(3,I)
PPTL(4,NPL)=PPTCL(4,I)
PPTL(5,NPL)=PPTCL(5,I)
283 IF(DIQBR) GO TO 210
IFL(JSIDE)=-IFLN
PX1(JSIDE)=-PX2
PY1(JSIDE)=-PY2
GO TO 220
C NEW DIQUARK CREATION
210 ID1=IABS(IFLL)
ID2=IABS(IFLN)
IF(ID1.LE.ID2) GO TO 215
ISWAP=ID1
ID1=ID2
ID1=ISWAP
215 IFL(JSIDE)=ISIGN(1000*ID1+100*ID2,IFLL)
PX1L(JSIDE)=PX1L(JSIDE)+PXL-PX2
PY1L(JSIDE)=PY1L(JSIDE)+PYL-PY2
PX1(JSIDE)=PX1L(JSIDE)
PY1(JSIDE)=PY1L(JSIDE)
220 W(1)=W(1)-PPTCL(4,I)-PPTCL(3,I)
W(2)=W(2)-PPTCL(4,I)+PPTCL(3,I)
SPINT=.TRUE.
KSPIN=2
IF(MOD(IFL(1),100).EQ.0.AND.MOD(IFL(2),100).EQ.0) GO TO 240
IDB=IDPARS(IFL(1),IFL(2),SPINT,KSPIN)
AMB=AMASS(IDB)+dmass
GO TO 211
240 IFCN=1
IF(ranf(0).GT.0.5) IFCN=2
IFLC1=-IFCN
IF(IFL(1).GT.0) IFLC1=IFCN
IFLC2=-IFLC1
IKH1=IDPARS(IFL(1),IFLC1,SPINT,KSPIN)
IKH2=IDPARS(IFL(2),IFLC2,SPINT,KSPIN)
AMB=AMASS(IKH1)+AMASS(IKH2)+DMASs
211 P1X=PX1(1)+PX1(2)
P1Y=PY1(1)+PY1(2)
PT12=P1X**2+P1Y**2
W12=W(1)*W(2)
AMS2=W12-PT12
IF(AMS2.LT.AMB**2) GO TO 100
SPINT=.TRUE.
KSPIN=1
IF(MOD(IFL(1),100).EQ.0.AND.MOD(IFL(2),100).EQ.0) GO TO 231
IDR=IDPARS(IFL(1),IFL(2),SPINT,KSPIN)
WEND=(AMASS(IDR)+DMAS)**2
GO TO 232
231 IKHR1=IDPARS(IFL(1),IFLC1,SPINT,KSPIN)
IKHR2=IDPARS(IFL(2),IFLC2,SPINT,KSPIN)
WEND=(AMASS(IKHR1)+AMASS(IKHR2)+DMAS)**2
232 SPINT=.FALSE.
KSPIN=0
IF(W(1)*W(2).GE.WEND) GO TO 130
GO TO 230
225 P1X=PX1(1)+PX1(2)
P1Y=PY1(1)+PY1(2)
PT12=P1X**2+P1Y**2
W12=W(1)*W(2)
AMS2=W12-PT12
C LAST BREAK OF STRING
230 NPTCL=I
AMC=SQRT(AMS2)
EC=(W(1)+W(2))/2.0
VC(1)=P1X/EC
VC(2)=P1Y/EC
VC(3)=(W(1)-W(2))/(2.0*EC)
NIN1=NPTCL+1
c.. the last break of the string will be done in clustr
CALL CLUSTR(IFL(1),IFL(2),AMC,ilead)
IF(LRET) GO TO 100
NFIN1=NPTCL
CALL LORTR(VC,NIN1,NFIN1,BACK)
NPR=NPR+1
NPL=NPL+1
IF(NPR.GT.MXPTCL.OR.NPL.GT.MXPTCL) GO TO 9999
c..the hadron from the left and the right side of the string
c..are copied to the final pptcl array
IDENTL(NPL)=IDENT(NFIN1)
PPTL(1,NPL)=PPTCL(1,NFIN1)
PPTL(2,NPL)=PPTCL(2,NFIN1)
PPTL(3,NPL)=PPTCL(3,NFIN1)
PPTL(4,NPL)=PPTCL(4,NFIN1)
PPTL(5,NPL)=PPTCL(5,NFIN1)
IDENTR(NPR)=IDENT(NIN1)
PPTR(1,NPR)=PPTCL(1,NIN1)
PPTR(2,NPR)=PPTCL(2,NIN1)
PPTR(3,NPR)=PPTCL(3,NIN1)
PPTR(4,NPR)=PPTCL(4,NIN1)
PPTR(5,NPR)=PPTCL(5,NIN1)
JJ=NFIX
DO 284 J=1,NPR
JJ=JJ+1
IDENT(JJ)=IDENTR(J)
PPTCL(1,JJ)=PPTR(1,J)
PPTCL(2,JJ)=PPTR(2,J)
PPTCL(3,JJ)=PPTR(3,J)
PPTCL(4,JJ)=PPTR(4,J)
PPTCL(5,JJ)=PPTR(5,J)
284 CONTINUE
JJ=NFIX+NPR
DO 285 J=1,NPL
JJ=JJ+1
K=NPL-J+1
IDENT(JJ)=IDENTL(K)
PPTCL(1,JJ)=PPTL(1,K)
PPTCL(2,JJ)=PPTL(2,K)
PPTCL(3,JJ)=PPTL(3,K)
PPTCL(4,JJ)=PPTL(4,K)
PPTCL(5,JJ)=PPTL(5,K)
285 CONTINUE
N1=NFIX+1
N2=NFIX+NPR+NPL-1
c.. we choose the LUND scheme
consti=.false.
IF(CONSTI) THEN
C------------------------------------------------------C
C----- CONSTITUENT TIME ----------------C
C------------------------------------------------------C
DO 1286 J=N1,N2
P3S=0.
ES=0.
DO 1287 L=N1,J
P3S=P3S+PPTCL(3,L)
1287 ES=ES+PPTCL(4,L)
c.. TI is the formation time of the particle
c.. ZI is the z coordinate
TI=(AMSTR-2.*P3S)/(2.*XAP)
ZI=(AMSTR-2.*ES)/(2.*XAP)
IF(J.NE.N2) GO TO 1288
TII=TI
ZII=ZI
1288 PPTCL(6,J)=0.
PPTCL(7,J)=0.
PPTCL(8,J)=ZI
PPTCL(9,J)=TI
1286 CONTINUE
C
PPTCL(6,N2+1)=0.
PPTCL(7,N2+1)=0.
PPTCL(8,N2+1)=ZII
PPTCL(9,N2+1)=TII
C
GO TO 1253
ENDIF
C------------------------------------------------------C
C----- INSIDE-OUTSIDE TIME (LUND) ----------------C
C------------------------------------------------------C
DO 286 J=N1,NPTCL
P3S=0.
ES=0.
NJ=J-1
IF(NJ.EQ.0) GO TO 289
DO 287 L=N1,NJ
P3S=P3S+PPTCL(3,L)
287 ES=ES+PPTCL(4,L)
c.. TI is the formation time of the particle
c.. ZI is the z coordinate
289 TI=(AMSTR-2.*P3S+PPTCL(4,J)-PPTCL(3,J))/(2.*XAP)
ZI=(AMSTR-2.*ES-PPTCL(4,J)+PPTCL(3,J))/(2.*XAP)
PPTCL(6,J)=0.
PPTCL(7,J)=0.
PPTCL(8,J)=ZI
PPTCL(9,J)=TI
286 CONTINUE
1253 RETURN
c.. warning if to many hadrons are produced in string
c.. increase the particle arrays to avoid this
9999 WRITE(6,9998) I
9998 FORMAT(//10X,40H...STOP IN STRING..NPTCL TOO HIGH NPTCL=,I5)
STOP
END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE CLUSTR(IFL1,IFL2,AMCTR,ilead)
c
cinput amctr : stringmass,
cinput ifl1 : leading quark (or diquark) along $+Z$ axis
cinput ifl2 : 2nd leading quark (or diquark)
cinput ilead : $2-ilead=$ number of leading (di-)quarks
c
c output : produced particles via common block ({\tt pptcl})
c
C HADRONS PRODUCTION BY MEANS CLUSTER BREAKING
C WITH QUARK AND ANTIQUARK OR QUARK AND DIQUARK OR DIQUARK AND
C ANTIDIQUARK IFL1 AND IFL2 ON ENDS.
c Only the final 2 particles are created in {\tt clustr}!
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit real*8 (a-h,o-z)
implicit integer (i-n)
COMMON/COMTRY/ NTRIES
PARAMETER(MXPTCL=200)
COMMON/PARTCL/ PPTCL(9,MXPTCL),nptcl,IDENT(MXPTCL),IDCAY(MXPTCL)
include 'comstr.f'
COMMON/COLRET/ LRET
LOGICAL LRET
DIMENSION IFL(2),U(3)
LOGICAL SPINT
real*8 valint(1)
common /values/ valint
include 'options.f'
ctp060202 to avoid warnings with gfortran compilation
logical ctp060202
ctp060202=.false.
if(ctp060202)write(*,*)ilead
ctp060202 end
c.. strange and charm suppression in clustr (see string)
prbs=ctparam(6)
prbc=ctparam(7)
c..the diquark-suppresion parameter is reduced for small
c string masses (finite size effect) see A. Jahns diploma thesis
if(amctr.le.2.8d0)then
pbarc=0.d0
elseif (amctr.le.5d0)then
pbarc=((amctr-2.8d0)/2.2d0)**3*ctparam(8)
else
pbarc=ctparam(8)
endif
dmas=ctparam(9)
dmass=ctparam(10)
C
C PRBS STRANGENESS SUPPRESSION PARAMETER
C PRBC CHARM SUPPRESSION PARAMETER
PU=1./(2.+PRBS+PRBC)
C
NFIX=NPTCL
NREP=0
LRET=.FALSE.
100 I=NFIX
IF(NREP.LT.NTRIES) GO TO 101
LRET=.TRUE.
RETURN
101 CONTINUE
KSPIN=0
IFL(1)=IFL1
IFL(2)=IFL2
SPINT=.FALSE.
I=I+2
IF(I.GT.MXPTCL) GO TO 9999
C CHOOSE SIDE OF BREAK
JSIDE=1
C IF ANY IFL IS A DIQUARK
IF(MOD(IFL(1),100).EQ.0.OR.MOD(IFL(2),100).EQ.0) GO TO 150
C IFL(1) AND IFL(2) ARE QUARKS
C SELECT Q,QBARPAIR OR QQ,QQBAR PAIR
DRND=ranf(0)
IF(DRND.LT.PBARC.and.valint(1).eq.0.d0) GO TO 140
C Q,QBAR PAIR
IFLN=ISIGN(IFLAV(PU,PRBS),-IFL(JSIDE))
GO TO 200
C QQ,QQBAR PAIR
140 IQ1=IFLAV(PU,PRBS)
IQ2=IFLAV(PU,PRBS)
IF(IQ1.LE.IQ2) GO TO 145
ISWAP=IQ1
IQ1=IQ2
IQ2=ISWAP
145 IFQQ=1000*IQ1+100*IQ2
IFLN=ISIGN(IFQQ,IFL(JSIDE))
GO TO 200
C IFL(1) OR IFL(2) IS DIQUARK
C Q,QBAR PAIR
150 IPSIGN=IFL(JSIDE)
IF(MOD(IFL(JSIDE),100).EQ.0) GO TO 130
IPSIGN=-IFL(JSIDE)
130 IFLN=ISIGN(IFLAV(PU,PRBS),IPSIGN)
C IDENTS AND MASSES OF PARTICLES
200 continue
c..quark-flip included (to describe some phi data)
if(CTParam(5).gt.ranf(0).and.mod(ifln,100).ne.0.and.
& mod(ifl(jside),100).ne.0.and.mod(ifl(3-jside),100).ne.0)then
c quark-flip
IDENT(I-1)=IDPARC(IFL(JSIDE),IFL(3-JSIDE),SPINT,KSPIN)
IDENT(I)=IDPARC(-IFLN,IFLN,SPINT,KSPIN)
else
IDENT(I-1)=IDPARC(IFL(JSIDE),IFLN,SPINT,KSPIN)
IDENT(I)=IDPARC(IFL(3-JSIDE),-IFLN,SPINT,KSPIN)
end if
c..for special bbar-b annihilation reactions for conservation
c of total quantum numbers
if(valint(1).ne.0.d0)then
ifq1=int(valint(1)/10.)
ifq2=-mod(int(valint(1)),10)
if(isign(1,ifln).eq.isign(1,ifq1))then
IDENT(I-1)=IDPARC(IFL(JSIDE),ifq1,SPINT,KSPIN)
IDENT(I)=IDPARC(IFL(3-JSIDE),ifq2,SPINT,KSPIN)
else
IDENT(I-1)=IDPARC(IFL(JSIDE),ifq2,SPINT,KSPIN)
IDENT(I)=IDPARC(IFL(3-JSIDE),ifq1,SPINT,KSPIN)
endif
endif
PPTCL(5,I-1)=AMASS(IDENT(I-1))
PPTCL(5,I)=AMASS(IDENT(I))
C IF TOO LOW MASS,START ALL OVER (i.e. goto 100)
DEMAS=0.15
IF(IFLN.LT.3) DEMAS=0.
c IF(AMCTR.GT.PPTCL(5,I-1)+PPTCL(5,I)+DEMAS) GO TO 102
IF(AMCTR.GT.PPTCL(5,I-1)+PPTCL(5,I)+DEMAS) then
if(mod(ifl1,100).eq.0.or.mod(ifl2,100).eq.0)goto 102
c..maximum kinetic energy cutoff for meson-clustr:
c..we want a lot of energy in the particle mass in this last break
IF(AMCTR-PPTCL(5,I-1)-PPTCL(5,I).lt.ctparam(43)) GO TO 102
endif
NREP=NREP+1
c.. 100 starts all over
GO TO 100
102 CONTINUE
c.. isotropic px py pz distribution
PA=DBLPCM(AMCTR,PPTCL(5,I-1),PPTCL(5,I))
U(3)=1.-2.*ranf(0)
PHI=2.*PI*ranf(0)
ST=SQRT(1.-U(3)**2)
U(1)=ST*COS(PHI)
U(2)=ST*SIN(PHI)
PPTCL(1,I-1)=PA*U(1)
PPTCL(1,I)=-(PA*U(1))
PPTCL(2,I-1)=PA*U(2)
PPTCL(2,I)=-(PA*U(2))
PPTCL(3,I-1)=PA*U(3)
PPTCL(3,I)=-(PA*U(3))
PA2=PA**2
PPTCL(4,I-1)=SQRT(PA2+PPTCL(5,I-1)**2)
PPTCL(4,I)=SQRT(PA2+PPTCL(5,I)**2)
IDCAY(I-1)=0
IDCAY(I)=0
NPTCL=I
c..forward/backward distribution in clustr for baryons
c..(no pt in the last string break!)
c..pt for the baryon comes from parton kick in the excitation
if(abs(ident(i)).ge.1000.or.abs(ident(i-1)).ge.1000)then
PPTCL(1,I-1)=0.d0
PPTCL(1,I)=0.d0
PPTCL(2,I-1)=0.d0
PPTCL(2,I)=0.d0
PPTCL(3,I-1)=PA
PPTCL(3,I)=-PA
PA2=PA**2
PPTCL(4,I-1)=SQRT(PA2+PPTCL(5,I-1)**2)
PPTCL(4,I)=SQRT(PA2+PPTCL(5,I)**2)
IDCAY(I-1)=0
IDCAY(I)=0
NPTCL=I
endif
c..if baryon number=+-1, force the (anti-)baryon in positive
c..z-direction (just pick the right hemisphere)
if(ctoption(29).gt.0)then
if( (iabs(ident(i)/1000).ne.0.and.iabs(ident(i-1)/1000).eq.0
& .and.pptcl(3,i).lt.0.d0).or.
& (iabs(ident(i-1)/1000).ne.0.and.iabs(ident(i)/1000).eq.0
& .and.pptcl(3,i-1).lt.0.d0)) then
pptcl(3,i) =-pptcl(3,i)
pptcl(3,i-1)=-pptcl(3,i-1)
endif
endif
RETURN
c.. particle array to small warning:
9999 WRITE(6,9998) I
9998 FORMAT(//10X,40H...STOP IN CLUSTR..NPTCL TOO HIGH NPTCL=,I5)
STOP
END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
integer FUNCTION IFLAV(PU,PRBS)
c
cinput PU : 1-{\tt PU}= up (down, resp.) probability
cinput PRBS : Strange quark suppression
c
c output : {\tt iflav}: flavor of created quark
c
c Returns quark flavor acc. to suppression prob's:
c 1=up, 2=down, 3=strange, 4=charm
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit real*8 (a-h,o-z)
implicit integer (i-n)
C
RNDOM=ranf(0)
C
IF(RNDOM.GT.PU) GO TO 1
c..create up quark
IFLAV=1
RETURN
1 IF(RNDOM.GT.2.0*PU) GO TO 2
c..create down quark
IFLAV=2
RETURN
2 IF(RNDOM.GT.PU*(2.0+PRBS)) GO TO 3
c..create strange quark
IFLAV=3
RETURN
c..create charm quark
3 IFLAV=4
RETURN
END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
real*8 FUNCTION ZFRAGS(IFL,IFLN,PT2,ZMIN,ZMAX,leading)
c
cinput IFL : ID of existing quark
cinput IFLN : ID of newly created quark
cinput PT2 : $p_t$ of newly created hadron
cinput ZMIN : lowest allowed longitudinal momentum fraction
cinput ZMAX : highest allowed longitudinal momentum fraction
cinput leading : flag for leading particle
c
coutput ZFRAGS : longitudinal momentum fraction of created hadron
c
c According to the fragmentation function(s), longitudinal momentum
c is assigned to the hadron.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit real*8 (a-h,o-z)
implicit integer (i-n)
LOGICAL leading
include 'options.f'
COMMON/INPRNT/ ITDKY,ITLIS
PARAMETER(ALFT=0.5,ARHO=0.5,APHI=0.,APSI=-2.)
PARAMETER(AN=-0.5,ALA=-0.75,ALAC=-1.75)
PARAMETER(AKSI=-1.0,AUSC=-2.0,AUCC=-2.0)
c.. cto 21 chooses the fragmentation fct.
if ((.not.leading).or.(ifln.eq.3)) then
affm=ctparam(47)
bffm=ctparam(48)
5108 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
YF=((1d0-ZFRAGS)**bffm*(bffm+1)*affm+1-affm)/3d0
ctp060926 if(yf.gt.1d0.or.yf.lt.0d0)then
ctp060926 write(6,*)'ZFRAGS: wrong norm:',yf,zmin,zmax,zfrags
ctp060926 end if
IF(ranf(0).LE.YF) RETURN
GO TO 5108
endif
c.. GAUSSIAN fragmentation fct.
if(CTOption(21).eq.0)then
affm=CTParam(36)
bffm=CTParam(37)
c.. suppress low momentum particles
deltaz=zmax-zmin
zmin=zmin+deltaz*0.25d0
108 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
c.. gaussian distr.
yf=exp(-(((zfrags-bffm)**2)/(2.*affm**2)))
c.. field-feynmann fragmentation fct.
c YF=((1d0-ZFRAGS)**bffm*(bffm+1)*affm+1-affm)/3d0
ctp060926 if(yf.gt.1d0.or.yf.lt.0d0)then
ctp060926 write(6,*)'ZFRAGS: wrong norm:',yf,zmin,zmax,zfrags
ctp060926 end if
c return
IF(ranf(0).LE.YF) RETURN
GO TO 108
else if(CTOption(21).eq.1)then
c..lund-fragmentation fct.
1008 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
YF=(1-zfrags)*exp(-(0.7*pt2/zfrags))/3d0
ctp060926 if(yf.gt.1d0.or.yf.lt.0d0)then
ctp060926 write(6,*)'ZFRAGS: wrong norm:',yf,zmin,zmax,zfrags
ctp060926 end if
IF(ranf(0).LE.YF) RETURN
GO TO 1008
else if(CTOption(21).eq.2)then
c.. kaidalov's fragmentation fct.
ID1=IABS(IFL)
ID2=IABS(IFLN)
IF(MOD(ID2,100).EQ.0) GO TO 15
GO TO(1,2,3,4),ID2
C UU-TRAJECTORY
1 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
YF=(1.0-ZFRAGS)**(ALFT-ARHO)
IF(ranf(0).LE.YF) RETURN
GO TO 1
C DD-TRAJECTORY
2 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
YF=(1.-ZFRAGS)**(ALFT-ARHO)
IF(ranf(0).LE.YF) RETURN
GO TO 2
C SS-TRAJECTORY
3 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
YF=(1.-ZFRAGS)**(ALFT-APHI)
IF(ranf(0).LE.YF) RETURN
GO TO 3
C CC-TRAJECTORY
4 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
YF=(1.-ZFRAGS)**(ALFT-APSI)
IF(ranf(0).LE.YF) RETURN
GO TO 4
C
15 Continue
CALL FLAVOR(ID2,IFL2,IFL3,IFL1,ISPIN)
IF((IFL2.EQ.1.AND.IFL3.EQ.1)) GO TO 16
IF((IFL2.EQ.1.AND.IFL3.EQ.2)) GO TO 17
IF((IFL2.EQ.1.AND.IFL3.EQ.3)) GO TO 18
IF((IFL2.EQ.1.AND.IFL3.EQ.4)) GO TO 19
IF((IFL2.EQ.2.AND.IFL3.EQ.2)) GO TO 20
IF((IFL2.EQ.2.AND.IFL3.EQ.3)) GO TO 21
IF((IFL2.EQ.2.AND.IFL3.EQ.4)) GO TO 22
IF((IFL2.EQ.3.AND.IFL3.EQ.3)) GO TO 23
IF((IFL2.EQ.3.AND.IFL3.EQ.4)) GO TO 24
IF((IFL2.EQ.4.AND.IFL3.EQ.4)) GO TO 25
C UUUU-TRAJECTORY
16 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
YF=(1.-ZFRAGS)**(ALFT-(2.*AN-ARHO))
IF(ranf(0).LE.YF) RETURN
GO TO 16
C UDUD-TRAJECTORY
17 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
YF=(1.-ZFRAGS)**(ALFT-(2.*AN-ARHO))
IF(ranf(0).LE.YF) RETURN
GO TO 17
C USUS-TRAJECTORY
18 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
YF=(1.-ZFRAGS)**(ALFT-(2.*ALA-ARHO))
IF(ranf(0).LE.YF) RETURN
GO TO 18
C UCUC-TRAJECTORY
19 ZFRAGS=ZMIN+ranf(0)*(ZMAX-ZMIN)
YF=(1.-ZFRAGS)**(ALFT-(2.*ALAC-ARHO))
IF(ranf(0).LE.YF) RETURN
GO TO 19
C DDDD-TRAJECTORY