Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
c $Id: coload.f,v 1.11 2001/04/06 21:48:16 weber Exp $
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
real*8 function sigtot(ind1,ind2,sqrts)
c
c Revision : 1.0
C
cinput ind1 : index of particle 1
cinput ind2 : index of particle 2
cinput sqrts: $\sqrt{s}$ of collision between part. 1 and 2
c
c {\tt sigtot} returns the total cross section (in mbarn) for the collision
c between the particles with the indices {\tt ind1} and {\tt ind2}.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit none
include 'coms.f'
include 'comres.f'
include 'newpart.f'
c
integer isigline
integer ind1,ind2,collclass
integer ityp1,ityp2,iso31,iso32
real*8 sqrts,mminit
c for detailed-balance
integer nCh,ii
real*8 e1,e2,sigma
c reset sigtot, store often needed values in scalars
sigtot=0.d0
ityp1=ityp(ind1)
ityp2=ityp(ind2)
iso31=iso3(ind1)
iso32=iso3(ind2)
c now get collision class (line-number for sigmaLN array in blockres.f)
c isigline classifies the collision (pp,pn,Delta N, Meson-Baryon etc)
isigline=collclass(ityp1,iso31,ityp2,iso32)
if(isigline.eq.0) return ! zero cross section for collclass=0
c get pointer for total cross section (column #2 in SigmaLN array)
iline=SigmaLn(2,1,isigline) ! flag of total cross section
c if zero, cross section is zero, return
if(iline.eq.0) return
if(iline.gt.0) then
c
c if gt zero we have a tabulated or parameterized total cross section,
c all table-lookups and parametrizations are accessed via crossx
c
call crossx(iline,sqrts,ityp1,iso31,
& max(fmass(ind1),mminit(ityp1)),
& ityp2,iso32,
& max(fmass(ind2),mminit(ityp2)),
& sigtot)
else
c
c total cross section via sum of partial cross sections
c
c get number of exit-channels:
if (isigline.gt.maxreac) then
write (6,*) '4isigline: ',isigline
endif
nCh=SigmaLn(1,1,isigline)
c
c transformation quantities into NN system for proper kinematics
c (necessary for detailed balance cross sections)
c first compute transformation betas
e1=sqrt(fmass(ind1)**2+px(ind1)**2
& +py(ind1)**2+pz(ind1)**2)
e2=sqrt(fmass(ind2)**2+px(ind2)**2
& +py(ind2)**2+pz(ind2)**2)
betax=(px(ind1)+px(ind2))/(e1+e2)
betay=(py(ind1)+py(ind2))/(e1+e2)
betaz=(pz(ind1)+pz(ind2))/(e1+e2)
c now transform momenta
pxnn=px(ind1)
pynn=py(ind1)
pznn=pz(ind1)
p0nn=e1
c call to Lorentz transformation
call rotbos(0d0,0d0,-betax,-betay,-betaz,
& pxnn,pynn,pznn,p0nn)
pnn=sqrt(pxnn*pxnn+pynn*pynn+pznn*pznn)
c end of transform part
c
c loop over exit channels for sum of partial cross sections
c partial cross sections start in column #3 of SigmaLN in blockres.f
do 10 ii=3,nCh+2
c get pointer for partial cross section
iline=SigmaLn(ii,1,isigline)
c normal partial cross sections
if(iline.gt.0) then
call crossx(iline,sqrts,ityp1,iso31,fmass(ind1),
& ityp2,iso32,fmass(ind2),sigma)
else
c detailed balance partial cross section (must be computed now)
c (crossz delivers inelastic channel for SINGLE resonance)
call crossz(iline,sqrts,ityp1,iso31,fmass(ind1),
& ityp2,iso32,fmass(ind2),sigma)
endif
c perform summation of partial cross sections
sigtot=sigtot+sigma
c end of loop for partial cross sections
10 continue
c end of total / sum of partial cross sections if
endif
c return to caller
return
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine getnext(k)
c
c Revision : 1.0
C
coutput k : index of next collison
c
c {\tt getnext} returns the index of the next collision or decay
c to be performed.
c If no further collisons occur in the timestep, {\tt getnext} returns
c {\tt k}=0 .
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
implicit none
integer k
include 'coms.f'
include 'options.f'
include 'colltab.f'
c shrink collision tables in case 80% load to counter possible overflow
if(dble(nct)/ncollmax.ge.0.8) call collshrink
c
c set k to current collision/decay (which has already been performed and
c and is outdated by the time of this call)
k = actcol
1 continue
c increment counter, next entry in table is now the current one
k = k+1
c if the end of the collision table has been reached, return with k=0
if (k.gt.nct) then
k = 0
actcol = k
return
endif
c if the current entry in the collision table is marked "F" - false -
c (due to previous interaction of one of the collision partners)
c then find new collision partners for the particle(s) via calls
c to collupd
if (.not.ctvalid(k)) then
call collupd(cti1(k),1)
c second call only if not a decay entry
if(cti2(k).gt.0) call collupd(cti2(k),1)
c if the current collision is now marked "T" - true - return
if(ctvalid(k)) then
actcol = k
return
endif
c the current collision is still marked false, go to top of loop
c (and increment counter)
goto 1
endif
c
c the current entry is marked "T" - true - this is the next
c collision to be perfomed
actcol = k
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine collshrink
c
c Revision : 1.0
c
c This subroutine deletes all entries in the collision tables between
c 1 and {\tt actcol}-1. It's purpose is to counter a possible overflow
c of the collision tables.
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
implicit none
integer i
include 'colltab.f'
do 104 i=actcol,nct
cttime(1+i-actcol) = cttime(i)
ctsqrts(1+i-actcol) = ctsqrts(i)
ctsigtot(1+i-actcol) = ctsigtot(i)
cti1(1+i-actcol) = cti1(i)
cti2(1+i-actcol) = cti2(i)
ctvalid(1+i-actcol) = ctvalid(i)
ctcolfluc(1+i-actcol) = ctcolfluc(i)
104 continue
c recalculate number of collisions in tables
nct=1+nct-actcol
c reset pointer to current collision
actcol=1
return
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine colload
c
c Revision : 1.0
c
c
c This routine fills the collision tables with all collisions and decays
c to be performed in the current timestep. Within the timestep,
c particle propagation is assumed on straight lines. This routine
c actually only performs the outer of the double particle loop and
c calls {\tt collupd} for the inner loop.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit none
integer i
include 'coms.f'
include 'colltab.f'
c reset number of collisions in table and current collision pointer
nct = 0
actcol = 0
c reset all collision arrays
do 10 i=1,ncollmax
cttime(i)=0.d0
ctsqrts(i)=0.d0
ctsigtot(i)=0.d0
cti1(i)=0
cti2(i)=0
ctvalid(i)=.false.
ctcolfluc(i)=1.d0
10 continue
c outer loop over all particles
do 20 i=1,npart
c call collupd for inner loop, -1: inner loop only from i+1 to npart
call collupd(i,-1)
20 continue
return
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine collupd(i,all)
c
c Revision : 1.0
C
cinput i : particle to be checked for collison or decay
cinput all : flag for update mode
c
c {\tt collupd} checks whether particle {\tt i} will collide or decay
c in the time interval between the current time {\tt acttime}
c and the end of the time step.
c {\tt collupd} uses the variable {\tt tmin} to find the {\bf earliest}
c interaction/decay of particle {\tt i} and store it in the
c collision arrays via a call to {\tt ctupdate}.
c For {\tt all}$>0$ all other particles from 1 to {\tt npart} are checked
c (necessary for update after a collision/decay), whereas for
c {\tt all}$<0$ only the particles with the indices from {\tt i+1} to
c {\tt npart} are checked (for calls via {\tt colload}).
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit none
include 'coms.f'
include 'options.f'
include 'colltab.f'
include 'boxinc.f'
real*8 dst2
integer i,all
integer j,imin,jmin,j0,A
integer wall
integer stidx
logical isstable
real*8 tn, wallcoll
cc
real*8 tcoll,sqrs,sigt,sqrts,sigtot
real*8 smin,sigmin,sigfac
real*8 colfaci,colfacj,colfac,colfacmin
c number of "initial" particles in event
A = At+Ap
c initially tmin is set to the time-interval until the end of the timestep
c tmin is then minimized to the time of the first interaction of
c particle i
c
c acttime: current time
c time: time at beginning of timestep
c dtimestep: length of timestep
tmin=dtimestep-acttime+time
c
c other information to be stored together with tmin
smin = 0 ! sqrt(s) of interaction
sigmin = 0 ! total cross section of interaction
imin = 0 ! index of first particle
jmin = 0 ! index of second particle
c
c check, if particle i is a resonance, that might decay within the remaining
c part of the timestep.
c If so, than treat decay as collision (with particle 2= 0)
if (dectime(i)-acttime.lt.tmin) then
isstable = .false.
do 132 stidx=1,nstable
if (ityp(i).eq.stabvec(stidx)) then
c write (6,*) 'no decay of particle ',ityp(i)
isstable = .true.
endif
132 enddo
if (.not.isstable) then
tmin = dectime(i) - acttime
smin=fmass(i)
imin = i
jmin = 0
endif
endif
ccccccccccccccccccccccccccccccccc
c new walls selected if mbflag equals 2
if ((mbox.gt.0).and.(mbflag.eq.2)) then
c acttime is the ACTUAL time
c time is the time at the BEGINNING of the timestep
c tmin is being minimized RELATIVE to the beginning of the timestep
c tn is the relativ time to the next wall colision
tn=wallcoll(i,wall)
c comparison wheather a particle decays before a wall colision
if (tn.lt.tmin) then
c set the time
tmin=tn
c set the particle number
imin=i
c set the wall
jmin=wall
endif
endif
cc
c default setting: loop does only go from i+1 to npart
j0 = i+1
c in case of "update mode" let loop run starting from 1
if (all.gt.0) j0 = 1
c
c Now check, which is the earliest collision of particle i
c
do 101 j=j0,npart
c check for some exclusion cases
if (
c 1. avoid "self-interaction"
& i.ne.j
c 2. particles which have interacted with each other in the past
c are only allowed to interact with each other if at least one
c of them has had an interaction in between.
c (due to string-decays the structure is a little complicated, since
c one particle can have multiple partners of it's last interaction)
& .AND.
& ((lstcoll(i).ne.j.and.lstcoll(i).ne.(nmax+strid(j)+1))
& .or.
& (lstcoll(j).ne.i.and.lstcoll(j).ne.(nmax+strid(i)+1))
& .or.
& (lstcoll(i).eq.0.and.lstcoll(j).eq.0))
c 3. Particles within the projectile or target respectively are per
c default only allowed to interact with each other in case they
c have already had an interaction with a particle of the target
c or projectile respectively. This can be turned off by setting
c CTOption(6) to a nonzero value.
c This rule of course must not not apply to produced particles.
c In the case of a meson nucleus collision, projectile and
c target may be swapped in the particle vectors (therefore the
c use of Apt instead of Ap, because Apt has been then swapped
c accordingly)
& .AND.
& (CToption(6).ne.0.or.i.gt.A.or.j.gt.A.or.
& ncoll(i)+ncoll(j).gt.0.or.
& (i.le.Apt.and.j.gt.Apt).or.(j.le.Apt.and.i.gt.Apt))
& ) then
c
c determine time of minimal approach of particles i and j
c relative to current time
call nxtcoll(i,j,dst2,tcoll)
c
c are the particles close enough - check cut off
c (default: 250 mbarn, defined in coms.f)
if (dst2.lt.hit_sphere) then
c does the collision occur in the current time step?
if (tcoll.gt.0.d0.and.tcoll.lt.tmin) then
c get sqrt(s) and total cross section
sqrs = sqrts(i,j)
c
c reduced cross section for leading hadrons of string fragmentation
c within their formation time
c the scaling factor is sigfac which is determined by the
c individual particles scaling factors xtotfac
if(tform(i).le.acttime+tcoll
& .and.tform(j).le.acttime+tcoll) then
sigfac=1.d0
else if(tform(i).le.acttime+tcoll
& .and.tform(j).gt.acttime+tcoll) then
sigfac=xtotfac(j)
else if(tform(j).le.acttime+tcoll
& .and.tform(i).gt.acttime+tcoll) then
sigfac=xtotfac(i)
else
sigfac=xtotfac(i)*xtotfac(j)
endif
c get total cross section via call to sigtot and rescale
sigt = sigfac*sigtot(i,j,sqrs)
c rescale sigtot due to color fluctuations
ctp060202 call colorfluc(ityp(i),ityp(j),sqrs,
call colorfluc(ityp(i),ityp(j),
& colfaci,colfacj)
colfac=colfaci*colfacj
sigt = sigt*colfac
c are we within the geometrical cross section
if (sigt.gt.max(1.d-8,(10.d0*pi*dst2))) then
c this collision is to beat, now
tmin = tcoll
smin = sqrs
sigmin = sigt
imin = i
jmin = j
colfacmin=colfac
endif
endif
endif
endif
101 continue
if (imin.gt.0) then
c if we found something, then update table via call to ctupdate
c (keep in mind: tmin is relative to actual time!)
call ctupdate(imin,jmin,acttime+tmin,smin,sigmin,colfacmin)
c in case of "full load mode" after every collision
c only the first entry in the collision table is relevant
if(CTOption(17).ne.0) nct=1
endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine ctupdate(i,j,t,s,sig,cfac)
c
cinput i : index of 1st colliding particle
cinput j : index of 2nd colliding particle (0 for decay)
cinput t : (absolut) time of collision/decay
cinput s : $sqrt{s}$ (GeV) of collison
cinput sig : total cross section (mbarn) of collision
cinput cfac : scaling factor for color fluctuation
c
c This subroutine updates the collision arrays.
c It determines the (chonologically) correct position for the new
c entry in the collision arrays, creates the respective slot and
c inserts the new entry (via a call to {\tt ctset}.
c Then the arrays are scanned to tag the chonologically first collision
c of particle {\tt i} or {\tt j} {\em true} and all subsequent ones
c as {\em false}.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit none
integer i,j
real*8 t,s,sig,cfac
include 'colltab.f'
integer k,tfound,ncoll1
ncoll1 = nct + 1
tfound = ncoll1
c loop over all collisions in table
do 101 k=actcol+1,nct
c get the correct position for the new entry (chronologically sorted)
if (tfound.eq.ncoll1.and.t.le.cttime(k)) tfound = k
c the above construct works as follows:
c as long as t > cttime(k), the first term is true and teh
c the second is false. At the correct position for the new
c entry BOTH terms are true, for all later times the first
c term is false in order not to overwrite the value of tfound
101 continue
c make sure that collision is not already listed in the table
if (.not.(t.eq.cttime(tfound).and.(i.eq.cti1(tfound).and.
& j.eq.cti2(tfound).or.i.eq.cti2(tfound).and.
& j.eq.cti1(tfound)))) then
c then create slot for new entry
do 102 k=nct,tfound,-1
cttime(k+1) = cttime(k)
ctsqrts(k+1) = ctsqrts(k)
ctsigtot(k+1) = ctsigtot(k)
cti1(k+1) = cti1(k)
cti2(k+1) = cti2(k)
ctvalid(k+1) = ctvalid(k)
ctcolfluc(k+1) = ctcolfluc(k)
102 continue
c increment number of collisions/decays in table
nct = ncoll1
endif
c insert new entry into the created slot via call to ctset
call ctset(tfound,i,j,t,s,sig,cfac)
c
c only the chonologically FIRST collision of particle i is set to true
c
do 103 k=actcol+1,nct,1
c the newly found collision must be omitted in the following sequence
if (k.eq.tfound) goto 103
c is there already a collision with i or j ?
if (cti1(k).eq.i.or.cti2(k).eq.i) then
c if the other collision is at an earlier time (the table is time-ordered,
c therefore k < tfound corresponds to an earlier time)
c then set the new one to false or vice versa
if (k.lt.tfound.and.ctvalid(k)) then
ctvalid(tfound) = .false.
else
ctvalid(k) = .false.
endif
endif
c do likewise for the second particle
if (j.gt.0.and.(cti1(k).eq.j.or.cti2(k).eq.j)) then
if (k.lt.tfound.and.ctvalid(k)) then
ctvalid(tfound) = .false.
else
ctvalid(k) = .false.
endif
endif
103 continue
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
subroutine ctset(tfound,i,j,t,s,sig,cfac)
c
c Revision : 1.0
C
cinput tfound : index in coll. array for coll. to be inserted
cinput i : index of first colliding particle
cinput j : index of second colliing particle (0 for decay, negative: wall)
cinput t : (absolute) time of collision
cinput s : $sqrt{s}$ (GeV) of collison
cinput sig : total cross section (mbarn) of collsion
cinput cfac : scaling factor for color fluctuation
c
c {\tt ctset} enters the collision of particles {\tt i} and {\tt j}
c into the collision arrays at index {\tt tfound}.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit none
integer tfound,i,j
real*8 t,s,sig,cfac
include 'colltab.f'
c
cttime(tfound) = t
ctsqrts(tfound) = s
ctsigtot(tfound) = sig
cti1(tfound) = i
cti2(tfound) = j
ctvalid(tfound) = .true.
ctcolfluc(tfound) = cfac
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
real*8 function sqrts(i,j)
c
c Revision : 1.0
c
c input: i,j : numbers of colliding particles
c output: $\sqrt{s}$ of collision as return value
c
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
implicit none
include 'coms.f'
integer i,j
real*8 p10,p20
p10 = sqrt((px(i)+ffermpx(i))**2
+ +(py(i)+ffermpy(i))**2
+ +(pz(i)+ffermpz(i))**2+fmass(i)**2)
p20 = sqrt((px(j)+ffermpx(j))**2
+ +(py(j)+ffermpy(j))**2
+ +(pz(j)+ffermpz(j))**2+fmass(j)**2)
sqrts = sqrt((p10+p20)**2
+ -(px(i)+ffermpx(i)+px(j)+ffermpx(j))**2
+ -(py(i)+ffermpy(i)+py(j)+ffermpy(j))**2
+ -(pz(i)+ffermpz(i)+pz(j)+ffermpz(j))**2)
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine nxtcoll(j,k,dst,dtauc)
c
c Revision : 1.0
c
c input: j,k : indices of colliding particles
coutput dst : impact parameter squared
coutput dtauc : collisiontime in the computational system
c
c {\tt nxtcoll} is the heart of the collision term. It determines
c the time in the computional system, when the collision between
c j and k took or will take place ({\tt dtauc}). The squared impact
c parameter of the collision is returned in {\tt dst}. {\tt dst} is
c independent of the computational system in which the coordinates
c of j and k are given.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
implicit none
integer j,k, i
include 'coms.f'
real*8 u1(0:3), u2(0:3), p1(0:3), p2(0:3)
real*8 dp(0:3), du(0:3), bt_com(3), bt(3)
real*8 du2, dp2, dudp, bt_du, bt_dp, btdr, bt2
real*8 dst, gam_com, gam_com2, bt_com2, dtauc
c
c do some assignments first
c
u1(0) = r0(j)
u1(1) = rx(j)
u1(2) = ry(j)
u1(3) = rz(j)
u2(0) = r0(k)
u2(1) = rx(k)
u2(2) = ry(k)
u2(3) = rz(k)
p1(0) = sqrt(px(j)**2+py(j)**2+pz(j)**2+fmass(j)**2)
p1(1) = px(j)
p1(2) = py(j)
p1(3) = pz(j)
p2(0) = sqrt(px(k)**2+py(k)**2+pz(k)**2+fmass(k)**2)
p2(1) = px(k)
p2(2) = py(k)
p2(3) = pz(k)
c
c -velocity and gamma-factor of the two particle center of momentum
c frame (com) measured in the computational system
c
bt_com2 = 0.0d0
do 1 i=1,3
bt_com(i) = -((p1(i)+p2(i))/(p1(0)+p2(0)))
bt_com2 = bt_com2 + bt_com(i)**2
1 continue
gam_com = 1.0d0/sqrt(1.0d0-bt_com2)
gam_com2 = gam_com**2/(1.0d0+gam_com)
c
c calculate some numbers which are needed for the Lorentz-transformation
c
bt_du = 0.0d0
bt_dp = 0.0d0
do 2 i=1,3
bt_du = bt_du + bt_com(i)*(u1(i) - u2(i))
bt_dp = bt_dp + bt_com(i)*(p1(i) - p2(i))
2 continue
c
c calculate bt_com square and the dotproduct bt_com*(r(j)-r(k)),
c where the r's are given in the computational frame
c
c perform Lorentz-transformation of relative distance and relative
c momentum vectors of particles j and k into com-frame
c
c use the resulting 3-vectors du and dp to obtain du and dp squared
c and the dotproduct du*dp
c
du2 = 0.0d0
dp2 = 0.0d0
dudp = 0.0d0
bt2 = 0.0d0
btdr = 0.0d0
do 3 i=1,3
bt(i) = p1(i)/p1(0) - p2(i)/p2(0) ! Rechensystem rel. vel.
bt2 = bt2 + bt(i)**2
btdr = btdr + bt(i)*(u1(i)-u2(i)) ! Rechensystem
du(i) = u1(i)-u2(i) + bt_com(i)*
* (gam_com2*bt_du+gam_com*(u1(0)-u2(0)))
dp(i) = p1(i)-p2(i) + bt_com(i)*
* (gam_com2*bt_dp+gam_com*(p1(0)-p2(0)))
du2 = du2 + du(i)*du(i)
dp2 = dp2 + dp(i)*dp(i)
dudp = dudp + du(i)*dp(i)
3 continue
c
c obtain collision time and impact parameter squared
c
dtauc = -(btdr/bt2)
dst = du2 - dudp*dudp/dp2
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine scantab(ind,offs)
c
c Revision : 1.0
c
cinput ind : index of particle
cinput offs: offset
c
c {\tt scantab} adjusts the collision table to changed particle
c indices due to calls to {\tt addpart} or {\tt delpart}.
c
c In case of an annihilation a list is created of those particles
c which have lost their collision partner and have to be rechecked
c for possible collisions/decays.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
implicit none
include 'colltab.f'
include 'coms.f'
integer ind,offs,i,k
logical rescan
c reset counters for the rechecking of particles due to lost collision
c partners
nsav=0
rescan=.false.
c call from addpart
if (offs.gt.0) then
c shift upwards, if necessary
do 1 i=1,nct
if (cti1(i).ge.ind) cti1(i) = cti1(i) + offs
if (cti2(i).ge.ind) cti2(i) = cti2(i) + offs
1 continue
c
c call from delpart
else
c omit scan, if last collision in table
if(actcol.eq.nct) return
c start loop with next collision in table
i=actcol+1
2 continue
if((cti1(i).eq.ind).or.(cti2(i).eq.ind)) then
c a dubious entry has been found, now
c look for particles with 'lost' collision partners
if(cti1(i).eq.ind.and.cti2(i).gt.0) then
c save particles with 'lost' partners in the ctsav array
nsav=nsav+1
ctsav(nsav)=cti2(i)
if(ctsav(nsav).gt.ind) ctsav(nsav)=ctsav(nsav) + offs
elseif(cti2(i).eq.ind.and.cti1(i).gt.0) then
nsav=nsav+1
ctsav(nsav)=cti1(i)
if(ctsav(nsav).gt.ind) ctsav(nsav)=ctsav(nsav) + offs
endif
c delete obsolete collision
do 4 k=i+1,nct
cttime(k-1) = cttime(k)
ctsqrts(k-1) = ctsqrts(k)
ctsigtot(k-1) = ctsigtot(k)
cti1(k-1) = cti1(k)
cti2(k-1) = cti2(k)
ctvalid(k-1) = ctvalid(k)
ctcolfluc(k-1) = ctcolfluc(k)
4 continue
c decrement collision counter
nct = nct-1
rescan=.true.
else
c else entry is OK
rescan=.false.
endif
c shift rest of table, in case entry has not been deleted
if(.not.rescan) then
if (cti1(i).gt.ind) cti1(i) = cti1(i) + offs
if (cti2(i).gt.ind) cti2(i) = cti2(i) + offs
i=i+1
endif
c condinue procedure until all collisions have been scanned
if(i.le.nct) goto 2
endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine printtab
c
c Revision: 1.0
c
c {\tt printtab} prints the contents of the collision arrays on
c unit 6 and marks the current collision with an *. This subroutine
c is used for debugging purposes only.
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
implicit none
include 'colltab.f'
integer i
character*1 c
c
write(6,*) 'colltab:'
do 101 i=1,nct
c = ' '
if (i.eq.actcol) c = '*'
write(6,'(i4,1x,L1,A1,2(i4,1x),4(f6.3,1x))')
& i,ctvalid(i),c,cti1(i),cti2(i),cttime(i),ctsqrts(i)
101 continue
return
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ctp060202 subroutine colorfluc(it1,it2,ws,fac1,fac2)
subroutine colorfluc(it1,it2,fac1,fac2)
c
c Revision : 1.0
c
cinput it1 : ityp particle 1
cinput it2 : ityp particle 2
cinput ws : $\sqrt{s}$ of collision
coutput fac1 : x-section scaling factor of particle 1
coutput fac2 : x-section scaling factor of particle 2
c
c Modifies the hadron cross section due to color fluctuations,
c ref. L. Frankfurt et al.: Ann. Rev. Nucl. Part. Sc. 44 (1994)501
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
implicit none
include 'options.f'
ctp060202 real*8 ws,fac1,fac2
real*8 fac1,fac2
real*8 x,y,Pmes,Pbar,ranf
integer it1,it2
fac1=1d0
fac2=1d0
c switched on ?
if (ctoption(42).eq.0) return
c particle 1 is baryon
if (abs(it1).lt.100) then
1 x=ranf(0)*3d0
y=ranf(0)
c probability disrtibution for x-section factor
Pbar=(1.19+32.11*x-15.65*x**2-1.24*x**3+0.94*x**4)/18.d0
Pbar=max(0d0,Pbar)
if(y.gt.Pbar) goto 1
fac1=x
c particle 1 is meson
else
2 x=ranf(0)*5d0
y=ranf(0)
c probability disrtibution for x-section factor
Pmes=(21.76+4.41*x-3-79*x**2+0.40*x**3)/25.d0
Pmes=max(0d0,Pmes)
if(y.gt.Pmes) goto 2
fac1=x
endif
c particle 2 is baryon
if (abs(it2).lt.100) then
3 x=ranf(0)*3d0
y=ranf(0)
c probability disrtibution for x-section factor
Pbar=(1.19+32.11*x-15.65*x**2-1.24*x**3+0.94*x**4)/18.d0
Pbar=max(0d0,Pbar)
if(y.gt.Pbar) goto 3
fac2=x
c particle 2 is meson
else
4 x=ranf(0)*5d0
y=ranf(0)
c probability disrtibution for x-section factor
Pmes=(21.76+4.41*x-3-79*x**2+0.40*x**3)/25.d0
Pmes=max(0d0,Pmes)
if(y.gt.Pmes) goto 4
fac2=x
endif
return
end