IAP GITLAB

Skip to content
Snippets Groups Projects
cascinit.f 14.1 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
c $Id: cascinit.f,v 1.11 2002/05/14 12:33:50 balazs Exp $
      subroutine cascinit(ZZ,AA,nucleus)

      implicit none

      include 'coms.f'
      include 'options.f'
      include 'inputs.f'

      integer Z,A,i,getspin,fchg,ZZ,AA,antia, j,k, nrjc,izcnt,nucleus
      real*8 R,P,R2,ranf,sint,phi,nucrad,cost,drr
      real*8 xcm,ycm,zcm,pxcm,pycm,pzcm,densnorm,add,avd,ws
      real*8 r_long, r_short, rdef, ratio, alpha
c
c mass correction according to binding energy
      real*8 meff
ce bcorr to prevent recycling odd nuclei
         logical bcorr
        common /ini/ bcorr
        bcorr=.false.

C averaged density of one Gaussian in units of central value
      avd = 0.5**1.5

      pxcm=0.d0
      pycm=0.d0
      pzcm=0.d0

      A=abs(AA)
      Z=abs(ZZ)
      antia=A/AA

      PT_AA(nucleus)=A

      if(A.gt.AAmax) then
         write(6,*)'***(E): Mass ',A,' exceeds initialization limit!'
         write(6,*)'        -> increase parameter AAmax=',AAmax
         write(6,*)'           in include-file inputs.f '
         write(6,*)'        -> uqmd aborting ... '
         stop
      endif

      if (A.eq.1) then  ! proton or neutron
        i = 1
        PT_iso3(i,nucleus) = antia*(-1+2*Z)
        PT_ityp(i,nucleus) = antia*1
        uid_cnt=uid_cnt+1
        PT_uid(i,nucleus)=uid_cnt
        PT_spin(i,nucleus) = 1
        PT_dectime(i,nucleus)=1.d31
        PT_charge(i,nucleus)=fchg(PT_iso3(i,nucleus),
     &                            PT_ityp(i,nucleus))
        PT_fmass(i,nucleus) = EMNUC
        PT_p0(i,nucleus)=sqrt(PT_fmass(i,nucleus)**2)
        return
      end if

C
C Initialisation of A nucleons in configuration space
C
      xcm=0.d0
      ycm=0.d0
      zcm=0.d0
      R2=0.d0
      if (CTOption(24).eq.1) then
        R2 = nucrad(A) + 10.0
      elseif(CTOption(24).eq.0)then
        R2 = nucrad(A)
      endif
      nrjc = 0
      if(CTOption(24).eq.2)then ! use fast method
        call nucfast(A,nucleus)
        do j=1,A
          PT_dectime(j,nucleus)=1.d31
          xcm=xcm+PT_rx(j,nucleus)
          ycm=ycm+PT_ry(j,nucleus)
          zcm=zcm+PT_rz(j,nucleus)
        enddo
      else
      do 1 j=1,A
        PT_dectime(j,nucleus)=1.d31
111     nrjc = nrjc+1
        R = R2*ranf(0)**(1./3.)
        cost = 1.-2.*ranf(0)
        sint = sqrt(1.-cost**2)
        phi = 2.*Pi*ranf(0)
        PT_r0(j,nucleus) = 0.d0
        PT_rx(j,nucleus) = R*sint*cos(phi)
        PT_ry(j,nucleus) = R*sint*sin(phi)
        PT_rz(j,nucleus) = R*cost
        if (CTParam(21).gt.0.0) then
           ratio = sqrt((1 + 4.0*CTParam(21)/3.0) /
     $                  (1 - 2.0*CTParam(21)/3.0) )
           alpha = atan( sqrt(PT_rx(j,nucleus)*PT_rx(j,nucleus)
     $     + PT_ry(j,nucleus)*PT_ry(j,nucleus))/PT_rz(j,nucleus))
           r_short = nucrad(A)*(ratio**(-(1.0/3.0)))
           r_long  = nucrad(A)*(ratio**(2.0/3.0))
           rdef = r_short/sqrt(1-((r_long**2-r_short**2)/r_long**2)
     $            *cos(alpha)*cos(alpha))
        else
           rdef = nucrad(A)
        endif


        if (CTOption(24).eq.1) then
           WS = 1 / ( 1 + dexp( ( R - rdef ) / 0.545 ) )
cdh        if (ranf(0) > WS ) then
           if (ranf(0) .gt. WS ) then
c               write (6,*) "rejected: ",R
              goto 111
           endif
        else
           do 11 k=1,j-1
              drr=(PT_rx(j,nucleus)-PT_rx(k,nucleus))**2
     &             +(PT_ry(j,nucleus)-PT_ry(k,nucleus))**2
     &             +(PT_rz(j,nucleus)-PT_rz(k,nucleus))**2
              if (drr.lt.2.6.and.nrjc.lt.CTParam(46)) goto 111
 11        continue
        endif
        xcm=xcm+PT_rx(j,nucleus)
        ycm=ycm+PT_ry(j,nucleus)
        zcm=zcm+PT_rz(j,nucleus)
1     continue
      endif

      if (nrjc.ge.CTParam(46)) then
c       write(6,*)'*** warning: initialisation corrupt '
         bcorr=.true.
      end if

      xcm = xcm/dble(A)
      ycm = ycm/dble(A)
      zcm = zcm/dble(A)
      do 13 j=1,A
        if (CTOption(24).eq.0) then
          PT_rx(j,nucleus) = PT_rx(j,nucleus)-xcm
          PT_ry(j,nucleus) = PT_ry(j,nucleus)-ycm
          PT_rz(j,nucleus) = PT_rz(j,nucleus)-zcm
        endif
        PT_rho(j,nucleus) = avd
13    continue

C local proton density in nucleus A,Z
      do 14 j=1,Z
        do 15 k=j+1,Z
          drr=(PT_rx(j,nucleus)-PT_rx(k,nucleus))**2
     &       +(PT_ry(j,nucleus)-PT_ry(k,nucleus))**2
     &       +(PT_rz(j,nucleus)-PT_rz(k,nucleus))**2
          add=exp(-(2.0*gw*drr))
          PT_rho(j,nucleus) = PT_rho(j,nucleus)+add
          PT_rho(k,nucleus) = PT_rho(k,nucleus)+add
15      continue
14    continue

C local neutron density in nucleus A,Z
      do 16 j=Z+1,A
        do 17 k=j+1,A
          drr=(PT_rx(j,nucleus)-PT_rx(k,nucleus))**2
     &       +(PT_ry(j,nucleus)-PT_ry(k,nucleus))**2
     &       +(PT_rz(j,nucleus)-PT_rz(k,nucleus))**2
          add=exp(-(2.0*gw*drr))
          PT_rho(j,nucleus) = PT_rho(j,nucleus)+add
          PT_rho(k,nucleus) = PT_rho(k,nucleus)+add
17      continue
16    continue

      densnorm = (2.0*gw/pi)**1.5
      do 18 j=1,A
        PT_rho(j,nucleus) = PT_rho(j,nucleus)*densnorm
        PT_pmax(j,nucleus) = hqc*(3.0*pi*pi*PT_rho(j,nucleus))**(1./3.)
18    continue

      izcnt=0
      do 12 j=1,A
         P = PT_pmax(j,nucleus)*ranf(0)**(1./3.)
         cost = 1.-2.*ranf(0)
         sint = sqrt(1.-cost**2)
         phi = 2.*Pi*ranf(0)
         PT_px(j,nucleus) = P*sint*cos(phi)
         PT_py(j,nucleus) = P*sint*sin(phi)
         PT_pz(j,nucleus) = P*cost
         pxcm=pxcm+PT_px(j,nucleus)
         pycm=pycm+PT_py(j,nucleus)
         pzcm=pzcm+PT_pz(j,nucleus)
         if (j.le.Z) then
            PT_iso3(j,nucleus)= 1*antia
            PT_charge(j,nucleus)=1*antia
         else
            PT_iso3(j,nucleus)= -(1*antia)
            PT_charge(j,nucleus)=0
         endif

         PT_spin(j,nucleus) = getspin(1,-1)
         PT_ityp(j,nucleus) = 1*antia
        uid_cnt=uid_cnt+1
        PT_uid(j,nucleus)=uid_cnt

12    continue

c perform CM-correction
      pxcm=pxcm/A
      pycm=pycm/A
      pzcm=pzcm/A
      do 2 i=1,A
         PT_px(i,nucleus)=PT_px(i,nucleus)-pxcm
         PT_py(i,nucleus)=PT_py(i,nucleus)-pycm
         PT_pz(i,nucleus)=PT_pz(i,nucleus)-pzcm
c effective masses for initial energy corr. (CTOption(11).eq.0)
         r=sqrt(PT_rx(i,nucleus)**2+PT_ry(i,nucleus)**2
     &         +PT_rz(i,nucleus)**2)
         p=sqrt(PT_px(i,nucleus)**2+PT_py(i,nucleus)**2
     &         +PT_pz(i,nucleus)**2)
ctp060202         PT_fmass(i,nucleus) = meff(z,a,r,p)
         PT_fmass(i,nucleus) = meff(z,a,p)
         PT_p0(i,nucleus)=sqrt(PT_px(i,nucleus)**2+PT_py(i,nucleus)**2
     &                    +PT_pz(i,nucleus)**2+PT_fmass(i,nucleus)**2)
 2    continue
c end of CM-correction

      return
      end

      subroutine nucfast(IA,JJ)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)

      include 'inputs.f'
      real*8 nucrad

      am=0.545
      rad=nucrad(ia)/am
      cr1=1.+3./rad+6./rad**2+6./rad**3
      cr2=3./rad
      cr3=3./rad+6./rad**2
      rimmax=0.0

      DO I=1,IA
 1      zuk=ranf(0)*cr1-1.
        if(zuk.le.0.)then
          tt=rad*(ranf(0)**.3333-1.)
        elseif(zuk.le.cr2 )then
          tt=-log(ranf(0))
        elseif(zuk.lt.cr3 )then
          tt=-log(ranf(0))-log(ranf(0))
        else
          tt=-log(ranf(0))-log(ranf(0))-log(ranf(0))
        endif
        if(ranf(0).gt.1./(1.+exp(-abs(tt))))goto 1
        rim=tt+rad
        z=rim*(2D0*ranf(0)-1D0)
        rim=dsqrt(rim*rim-z*z)
cc        if(rimmax.lt.rim*AM)rimmax=rim*AM
        PT_r0(I,JJ)=0d0
        PT_rz(I,JJ)=Z * AM

 2      s1=2d0*ranf(0)-1d0
        s2=2d0*ranf(0)-1d0
        s3=s1*s1+s2*s2
        if(s3.gt.1d0)goto 2
        s3=dsqrt(s3)
        c=s1/s3
        s=s2/s3
        PT_rx(I,JJ)=rim * C * AM
        PT_ry(I,JJ)=rim * S * AM
      enddo
cc      print *,"rimmax",rimmax
cc      if(debug.ge.3)then
cc        write (*,*) "nucleons"
cc        do i=1,ia
cc          write (*,'(i3,3g12.6)')i,PT_rx(i,JJ),PT_ry(i,JJ),PT_rz(i,JJ)
cc        enddo
cc        write (*,*)
cc      endif
      return
      END


      function nucrad(AA)
      implicit none
      real*8 nucrad, r_0
      integer A,AA
      include 'coms.f'
      include 'options.f'

      A=abs(AA)
c root mean square radius of nucleus of mass A
c r_0 corresponding to rho0
      if (CTOption(24).ge.1) then
c root mean square radius of nucleus of mass A (Mayer-Kuckuck)
         nucrad = 1.128 * a**(1./3.) - 0.89 * a**(-(1./3.))
      else
         r_0 = (0.75/pi/rho0)**(1./3.)
c subtract gaussian tails, for distributing centroids correctly
         nucrad = r_0*(0.5*(a + (a**(1./3.)-1.)**3.))**(1./3.)
      endif

      return
      end

      subroutine boostnuc(i1,i2,pin,b,dst)
      implicit none
      include 'coms.f'
      include 'options.f'
      integer i1,i2,i
      real*8 b,dst,ei,ti
      real*8 pin,beta,gamma

      do 1 i=i1,i2

      beta = pin/sqrt(pin**2+fmass(i)**2)
      gamma = 1.d0/sqrt(1.d0-beta**2)

c  Gallilei-Trafo in x-direction (impact parameter)
c  projectile hits at POSITIVE x
         rx(i) = rx(i) + b
c  distance between nuclei: projectile at NEGATIVE z for dst < 0
         if(CTOption(23).eq.0)then
           ti = r0(i)
           rz(i) = rz(i)/gamma+dst/gamma
         else
          rz(i) = (rz(i) + dst)
         end if


         Ei = p0(i)
         p0(i) = gamma*(p0(i) - beta*pz(i))
         pz(i) = gamma*(pz(i) - beta*Ei)

 1    continue
      return
      end

ctp060202      real*8 function meff(z,a,r,p)
      real*8 function meff(z,a,p)
c mean binding energy of a nucleon in a nucleus according to weizaecker
      implicit none
      include 'options.f'
      real*8 av,as,ac,aa,ap,mdef,p,e,EMNUC
      integer z,a
      parameter (av=0.01587,as=0.01834,ac=0.00071)
      parameter (aa=0.09286,ap=11.46,EMNUC=0.938)
      if(CTOption(11).ne.0.or.a.eq.1)then
        meff=EMNUC
        return
      end if
c...mass defect
      mdef=-(av*A)+as*A**0.66667+ac*z*z/a**0.33333+aa*(z-a/2.)**2/a
c...energy per nucleon = binding energy + nucleon mass
      e=min(0d0,mdef/a)+EMNUC
      meff=sqrt(e**2-p**2)
      return
      end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
      subroutine getnucleus(nucleus,offset)
c
c     Revision: 1.0
c
cinput nucleus : 1=projectile, 2=target
cinput offset  : offset for location of nucleus in particle vectors
c
c output : via common blocks
c
c This subroutine read in a nucleus which has been initialized
c by {\tt cascinit} and stored in the {\tt PT\_ *(i,nucleus)} arrays.
c The respective nucleus is then rotated randomly in configuration
c and momentum space to yield a new initial state.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
      implicit none
      include 'coms.f'
      include 'options.f'
      include 'inputs.f'

c local variables
      real*8 eul1,eul2,eul3,ceul1,seul1,ceul2,seul2,ceul3,seul3
      real*8 vecx0,vecy0,vecz0,vecx1,vecy1,vecz1,vecx2
      real*8 vecy2,vecz2
      integer k,nucleus,offset

c functions
      real*8 ranf

c ***
c *** rotation around Euler-angles
c ***
      if (CTParam(21).gt.0.0) then
         eul1 = 0.0
         eul2 = 0.0
         eul3 = 0.0
      else
         eul1 = ranf(0)*2.0*pi
         eul2 = ranf(0)*2.0*pi
         eul3 = ranf(0)*2.0*pi
      endif

      ceul1 = cos(eul1)
      seul1 = sin(eul1)
      ceul2 = cos(eul2)
      seul2 = sin(eul2)
      ceul3 = cos(eul3)
      seul3 = sin(eul3)

      do 178 k=1,PT_AA(nucleus)

c rotate in configuration space

         vecx0 = PT_rx(k,nucleus)
         vecy0 = PT_ry(k,nucleus)
         vecz0 = PT_rz(k,nucleus)


         vecx1 =   ceul1*vecx0 + seul1*vecy0
         vecy1 = -(seul1*vecx0)+ ceul1*vecy0
         vecz1 =                                     vecz0

         vecx2 =   ceul2*vecx1               + seul2*vecz1
         vecy2 =                       vecy1
         vecz2 = -(seul2*vecx1)              + ceul2*vecz1

         vecx0 =   ceul3*vecx2 + seul3*vecy2
         vecy0 = -(seul3*vecx2)+ ceul3*vecy2
         vecz0 =                                     vecz2

         rx(k+offset) = vecx0
         ry(k+offset) = vecy0
         rz(k+offset) = vecz0

c rotate in momentum space

         vecx0 = PT_px(k,nucleus)
         vecy0 = PT_py(k,nucleus)
         vecz0 = PT_pz(k,nucleus)


         vecx1 =   ceul1*vecx0 + seul1*vecy0
         vecy1 = -(seul1*vecx0)+ ceul1*vecy0
         vecz1 =                                     vecz0

         vecx2 =   ceul2*vecx1               + seul2*vecz1
         vecy2 =                       vecy1
         vecz2 = -(seul2*vecx1)              + ceul2*vecz1

         vecx0 =   ceul3*vecx2 + seul3*vecy2
         vecy0 = -(seul3*vecx2) + ceul3*vecy2
         vecz0 =                                     vecz2

         px(k+offset) = vecx0
         py(k+offset) = vecy0
         pz(k+offset) = vecz0

c initialize the other quantum numbers

         iso3(k+offset)=PT_iso3(k,nucleus)
         ityp(k+offset)=PT_ityp(k,nucleus)
         uid(k+offset)=PT_uid(k,nucleus)
         spin(k+offset)=PT_spin(k,nucleus)
         dectime(k+offset)=PT_dectime(k,nucleus)
         charge(k+offset)=PT_charge(k,nucleus)
         fmass(k+offset)=PT_fmass(k,nucleus)
         r0(k+offset)=PT_r0(k,nucleus)
         p0(k+offset)=PT_p0(k,nucleus)

 178  continue

      return
      end

C####C##1#########2#########3#########4#########5#########6#########7##
      real*8 function rnfWSX(AA,zmin,zmax)
c  yields a $x^n$ distributet value for $x$ between mmin and mmax
cccccCcc1ccccccccc2ccccccccc3ccccccccc4ccccccccc5ccccccccc6ccccccccc7cc

      implicit none

      real*8 zmin,zmax,ranf,a,rr,yf,z,nucrad
      integer AA
      parameter (a=0.54d0)

      rr=nucrad(aa)

      if(zmax.lt.rr)then
        write(6,*)'rnfwsx: maximum radius seems too low'
        stop
      end if

 108  continue
      z=zmin+ranf(0)*(zmax-zmin)
      yf=z*z/((zmax-zmin)**3)*0.5d0/(1d0+exp(z-rr)/a)
      rnfWSX=z
      if(yf.gt.1d0)stop'rnfWSX: wrong normalisaton:'
      if(yf.gt.ranf(0))    return
      goto 108

      end


CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
      subroutine setonshell(i)
c
c     Revision : 1.0
c     This subroutine set particle i on-shell
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

      include 'coms.f'
      integer i

      p0(i) = sqrt(px(i)**2+py(i)**2+pz(i)**2+fmass(i)**2)

      return
      end