Newer
Older
/**
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#ifndef _include_ProcessSequence_h_
#define _include_ProcessSequence_h_
#include <corsika/process/ContinuousProcess.h>
#include <corsika/process/DecayProcess.h>
#include <corsika/process/InteractionProcess.h>
#include <type_traits>
A compile time static list of processes. The compiler will
generate a new type based on template logic containing all the
\comment Using CRTP pattern,
https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
// define a marker (trait class) to tag any class that qualifies as "Process" for the
// "ProcessSequence"
std::false_type is_process_impl(...);
template <class T>
using is_process = decltype(is_process_impl(std::declval<T*>()));
// this is a marker to track which BaseProcess is also a ProcessSequence
template <typename T>
struct is_process_sequence {
static const bool value = false;
};
/**
T1 and T2 are both references if possible (lvalue), otherwise
(rvalue) they are just classes. This allows us to handle both,
rvalue as well as lvalue Processes in the ProcessSequence.
*/
class ProcessSequence : public BaseProcess<ProcessSequence<T1, T2> > {
using T1type = typename std::decay<T1>::type;
using T2type = typename std::decay<T2>::type;
T1 A; // this is a reference, if possible
T2 B; // this is a reference, if possible
ProcessSequence(T1 in_A, T2 in_B)
: A(in_A)
, B(in_B) {}
// example for a trait-based call:
// void Hello() const { detail::CallHello<T1,T2>::Call(A, B); }
template <typename Particle, typename Track, typename Stack>
EProcessReturn DoContinuous(Particle& p, Track& t, Stack& s) {
if constexpr (std::is_base_of<ContinuousProcess<T1type>, T1type>::value ||
ret |= A.DoContinuous(p, t, s);
if constexpr (std::is_base_of<ContinuousProcess<T2type>, T2type>::value ||
ret |= B.DoContinuous(p, t, s);
corsika::units::si::LengthType MaxStepLength(Particle& p, Track& track) {
corsika::units::si::LengthType
max_length = // if no other process in the sequence implements it
std::numeric_limits<double>::infinity() * corsika::units::si::meter;
if constexpr (std::is_base_of<ContinuousProcess<T1type>, T1type>::value ||
corsika::units::si::LengthType const len = A.MaxStepLength(p, track);
max_length = std::min(max_length, len);
if constexpr (std::is_base_of<ContinuousProcess<T2type>, T2type>::value ||
corsika::units::si::LengthType const len = B.MaxStepLength(p, track);
max_length = std::min(max_length, len);
}
template <typename Particle, typename Track>
corsika::units::si::GrammageType GetTotalInteractionLength(Particle& p, Track& t) {
return 1. / GetInverseInteractionLength(p, t);
}
template <typename Particle, typename Track>
corsika::units::si::InverseGrammageType GetTotalInverseInteractionLength(Particle& p,
Track& t) {
corsika::units::si::InverseGrammageType GetInverseInteractionLength(Particle& p,
Track& t) {
using namespace corsika::units::si;
InverseGrammageType tot = 0 * meter * meter / gram;
if constexpr (std::is_base_of<InteractionProcess<T1type>, T1type>::value ||
if constexpr (std::is_base_of<InteractionProcess<T2type>, T2type>::value ||
tot += B.GetInverseInteractionLength(p, t);
}
return tot;
template <typename Particle, typename Stack>
Particle& p, Stack& s,
[[maybe_unused]] corsika::units::si::InverseGrammageType lambda_select,
corsika::units::si::InverseGrammageType& lambda_inv_count) {
if constexpr (is_process_sequence<T1type>::value) {
// if A is a process sequence --> check inside
const EProcessReturn ret =
A.SelectInteraction(p, s, lambda_select, lambda_inv_count);
// if A did succeed, stop routine
if (ret != EProcessReturn::eOk) { return ret; }
} else if constexpr (std::is_base_of<InteractionProcess<T1type>, T1type>::value) {
// if this is not a ContinuousProcess --> evaluate probability
lambda_inv_count += A.GetInverseInteractionLength(p, s);
// check if we should execute THIS process and then EXIT
A.DoInteraction(p, s);
return EProcessReturn::eInteracted;
}
} // end branch A
if constexpr (is_process_sequence<T2>::value) {
// if A is a process sequence --> check inside
const EProcessReturn ret =
B.SelectInteraction(p, s, lambda_select, lambda_inv_count);
// if A did succeed, stop routine
if (ret != EProcessReturn::eOk) { return ret; }
} else if constexpr (std::is_base_of<InteractionProcess<T2type>, T2type>::value) {
// if this is not a ContinuousProcess --> evaluate probability
lambda_inv_count += B.GetInverseInteractionLength(p, s);
// check if we should execute THIS process and then EXIT
B.DoInteraction(p, s);
return EProcessReturn::eInteracted;
}
} // end branch A
return EProcessReturn::eOk;
}
template <typename Particle>
corsika::units::si::TimeType GetTotalLifetime(Particle& p) {
return 1. / GetInverseLifetime(p);
}
template <typename Particle>
corsika::units::si::InverseTimeType GetTotalInverseLifetime(Particle& p) {
return GetInverseLifetime(p);
}
template <typename Particle>
corsika::units::si::InverseTimeType GetInverseLifetime(Particle& p) {
using namespace corsika::units::si;
corsika::units::si::InverseTimeType tot = 0 / second;
if constexpr (std::is_base_of<DecayProcess<T1type>, T1type>::value ||
is_process_sequence<T1>::value) {
tot += A.GetInverseLifetime(p);
if constexpr (std::is_base_of<DecayProcess<T2type>, T2type>::value ||
is_process_sequence<T2>::value) {
tot += B.GetInverseLifetime(p);
EProcessReturn SelectDecay(
Particle& p, Stack& s,
[[maybe_unused]] corsika::units::si::InverseTimeType decay_select,
corsika::units::si::InverseTimeType& decay_inv_count) {
// if A is a process sequence --> check inside
const EProcessReturn ret = A.SelectDecay(p, s, decay_select, decay_inv_count);
// if A did succeed, stop routine
if (ret != EProcessReturn::eOk) { return ret; }
} else if constexpr (std::is_base_of<DecayProcess<T1type>, T1type>::value) {
// if this is not a ContinuousProcess --> evaluate probability
decay_inv_count += A.GetInverseLifetime(p);
// check if we should execute THIS process and then EXIT
if (decay_select < decay_inv_count) { // more pedagogical: rndm_select <
// decay_inv_count / decay_inv_tot
A.DoDecay(p, s);
return EProcessReturn::eDecayed;
}
} // end branch A
// if A is a process sequence --> check inside
const EProcessReturn ret = B.SelectDecay(p, s, decay_select, decay_inv_count);
// if A did succeed, stop routine
if (ret != EProcessReturn::eOk) { return ret; }
} else if constexpr (std::is_base_of<DecayProcess<T2type>, T2type>::value) {
// if this is not a ContinuousProcess --> evaluate probability
decay_inv_count += B.GetInverseLifetime(p);
// check if we should execute THIS process and then EXIT
B.DoDecay(p, s);
return EProcessReturn::eDecayed;
}
} // end branch B
void Init() {
A.Init();
B.Init();
/// the << operator assembles many BaseProcess, ContinuousProcess, and
/// Interaction/DecayProcess objects into a ProcessSequence, all combinatorics
/// must be allowed, this is why we define a macro to define all
/// combinations here:
template <
typename P1, typename P2,
typename std::enable_if<is_process<typename std::decay<P1>::type>::value &&
is_process<typename std::decay<P2>::type>::value>::type...>
inline auto operator<<(P1&& A, P2&& B) -> ProcessSequence<P1, P2> {
return ProcessSequence<P1, P2>(A.GetRef(), B.GetRef());
struct is_process_sequence<corsika::process::ProcessSequence<A, B> > {
} // namespace corsika::process