IAP GITLAB

Skip to content
Snippets Groups Projects
Commit 98f7a4ec authored by ralfulrich's avatar ralfulrich
Browse files

style guide

parent 79fc8447
No related branches found
No related tags found
No related merge requests found
......@@ -42,8 +42,9 @@ target_link_libraries (
CORSIKArandom
ProcessSibyll
CORSIKAcascade
ProcessStackInspector
# ProcessStackInspector
ProcessTrackingLine
ProcessNullModel
CORSIKAstackinterface
CORSIKAprocesses
CORSIKAparticles
......
......@@ -16,9 +16,19 @@
#include <corsika/process/ProcessReturn.h>
#include <corsika/random/RNGManager.h>
#include <corsika/random/UniformRealDistribution.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/stack/SecondaryView.h>
#include <corsika/units/PhysicalUnits.h>
#include <corsika/setup/SetupTrajectory.h>
/* see Issue 161, we need to include SetupStack only because we need
to globally define StackView. This is clearly not nice and should
be changed, when possible. It might be that StackView needs to be
templated in Cascade, but this would be even worse... so we don't
do that until it is really needed.
*/
#include <corsika/setup/SetupStack.h>
#include <cmath>
#include <iostream>
......@@ -35,25 +45,24 @@ namespace corsika::cascade {
* it very versatile. Via the template arguments physics models are
* plugged into the cascade simulation.
*
* <b>Tracking</b> must be a class according to the
* <b>TTracking</b> must be a class according to the
* TrackingInterface providing the functions: <code>void
* Init();</code> and <code>auto GetTrack(Particle const& p)</auto>,
* where the latter has a return type of <code>
* geometry::Trajectory<corsika::geometry::Line or Helix> </code>
*
* <b>ProcessList</b> must be a ProcessSequence.
* <b>TProcessList</b> must be a ProcessSequence.
* TimeOfIntersection(corsika::geometry::Line const& line,
*
* <b>Stack</b> is the storage object for particle data, i.e. with
* Particle class type <code>Stack::ParticleType</code>
*
*
*/
template <typename Tracking, typename ProcessList, typename Stack>
template <typename TTracking, typename TProcessList, typename TStack>
class Cascade {
using Particle = typename Stack::ParticleType;
using Particle = typename TStack::ParticleType;
// we only want fully configured objects
Cascade() = delete;
......@@ -63,8 +72,8 @@ namespace corsika::cascade {
* Cascade class cannot be default constructed, but needs a valid
* list of physics processes for configuration at construct time.
*/
Cascade(corsika::environment::Environment const& env, Tracking& tr, ProcessList& pl,
Stack& stack)
Cascade(corsika::environment::Environment const& env, TTracking& tr, TProcessList& pl,
TStack& stack)
: fEnvironment(env)
, fTracking(tr)
, fProcessSequence(pl)
......@@ -107,15 +116,16 @@ namespace corsika::cascade {
* New particles produced in one step are subject to further
* processing, e.g. thinning, etc.
*/
void Step(Particle& particle) {
void Step(Particle& vParticle) {
using namespace corsika;
using namespace corsika::units::si;
// determine geometric tracking
corsika::setup::Trajectory step = fTracking.GetTrack(particle);
setup::Trajectory step = fTracking.GetTrack(vParticle);
// determine combined total interaction length (inverse)
InverseGrammageType const total_inv_lambda =
fProcessSequence.GetTotalInverseInteractionLength(particle, step);
fProcessSequence.GetTotalInverseInteractionLength(vParticle, step);
// sample random exponential step length in grammage
std::exponential_distribution expDist(total_inv_lambda * (1_g / (1_m * 1_m)));
......@@ -126,7 +136,7 @@ namespace corsika::cascade {
// convert next_step from grammage to length
auto const* currentNode =
fEnvironment.GetUniverse()->GetContainingNode(particle.GetPosition());
fEnvironment.GetUniverse()->GetContainingNode(vParticle.GetPosition());
if (currentNode == &*fEnvironment.GetUniverse()) {
throw std::runtime_error("particle entered void universe");
......@@ -136,12 +146,12 @@ namespace corsika::cascade {
currentNode->GetModelProperties().ArclengthFromGrammage(step, next_interact);
// determine the maximum geometric step length
LengthType const distance_max = fProcessSequence.MaxStepLength(particle, step);
LengthType const distance_max = fProcessSequence.MaxStepLength(vParticle, step);
std::cout << "distance_max=" << distance_max << std::endl;
// determine combined total inverse decay time
InverseTimeType const total_inv_lifetime =
fProcessSequence.GetTotalInverseLifetime(particle);
fProcessSequence.GetTotalInverseLifetime(vParticle);
// sample random exponential decay time
std::exponential_distribution expDistDecay(total_inv_lifetime * 1_s);
......@@ -150,9 +160,8 @@ namespace corsika::cascade {
<< ", next_decay=" << next_decay << std::endl;
// convert next_decay from time to length [m]
LengthType const distance_decay = next_decay * particle.GetMomentum().norm() /
particle.GetEnergy() *
corsika::units::constants::c;
LengthType const distance_decay = next_decay * vParticle.GetMomentum().norm() /
vParticle.GetEnergy() * units::constants::c;
// take minimum of geometry, interaction, decay for next step
auto const min_distance =
......@@ -161,33 +170,45 @@ namespace corsika::cascade {
std::cout << " move particle by : " << min_distance << std::endl;
// here the particle is actually moved along the trajectory to new position:
// std::visit(corsika::setup::ParticleUpdate<Particle>{particle}, step);
particle.SetPosition(step.PositionFromArclength(min_distance));
// std::visit(setup::ParticleUpdate<Particle>{vParticle}, step);
vParticle.SetPosition(step.PositionFromArclength(min_distance));
// .... also update time, momentum, direction, ...
vParticle.SetTime(vParticle.GetTime() + min_distance / units::constants::c);
step.LimitEndTo(min_distance);
// particle.GetNode(); // previous VolumeNode
particle.SetNode(
vParticle.SetNode(
currentNode); // NOTE @Max : here we need to distinguish: IF particle step is
// limited by tracking (via fTracking.GetTrack()), THEN we need
// to check/update VolumeNodes. In all other cases it is
// guaranteed that we are still in the same volume
// apply all continuous processes on particle + track
corsika::process::EProcessReturn status =
fProcessSequence.DoContinuous(particle, step, fStack);
process::EProcessReturn status = fProcessSequence.DoContinuous(vParticle, step);
if (status == corsika::process::EProcessReturn::eParticleAbsorbed) {
std::cout << "Cascade: delete absorbed particle " << particle.GetPID() << " "
<< particle.GetEnergy() / 1_GeV << "GeV" << std::endl;
particle.Delete();
if (status == process::EProcessReturn::eParticleAbsorbed) {
std::cout << "Cascade: delete absorbed particle " << vParticle.GetPID() << " "
<< vParticle.GetEnergy() / 1_GeV << "GeV" << std::endl;
vParticle.Delete();
return;
}
std::cout << "sth. happening before geometric limit ? "
<< ((min_distance < distance_max) ? "yes" : "no") << std::endl;
/*
Create SecondaryView object on Stack. The data container
remains untouched and identical, and 'projectil' is identical
to 'vParticle' above this line. However,
projectil.AddSecondaries populate the SecondaryView, which can
then be used afterwards for further processing. Thus: it is
important to use projectle (and not vParticle) for Interaction,
and Decay!
*/
setup::StackView secondaries(vParticle);
[[maybe_unused]] auto projectile = secondaries.GetProjectile();
if (min_distance < distance_max) { // interaction to happen within geometric limit
// check whether decay or interaction limits this step
......@@ -195,33 +216,35 @@ namespace corsika::cascade {
std::cout << "collide" << std::endl;
InverseGrammageType const actual_inv_length =
fProcessSequence.GetTotalInverseInteractionLength(particle, step);
fProcessSequence.GetTotalInverseInteractionLength(vParticle, step);
corsika::random::UniformRealDistribution<InverseGrammageType> uniDist(
actual_inv_length);
random::UniformRealDistribution<InverseGrammageType> uniDist(actual_inv_length);
const auto sample_process = uniDist(fRNG);
InverseGrammageType inv_lambda_count = 0. * meter * meter / gram;
fProcessSequence.SelectInteraction(particle, step, fStack, sample_process,
fProcessSequence.SelectInteraction(vParticle, projectile, step, sample_process,
inv_lambda_count);
} else {
std::cout << "decay" << std::endl;
InverseTimeType const actual_decay_time =
fProcessSequence.GetTotalInverseLifetime(particle);
fProcessSequence.GetTotalInverseLifetime(vParticle);
corsika::random::UniformRealDistribution<InverseTimeType> uniDist(
actual_decay_time);
random::UniformRealDistribution<InverseTimeType> uniDist(actual_decay_time);
const auto sample_process = uniDist(fRNG);
InverseTimeType inv_decay_count = 0 / second;
fProcessSequence.SelectDecay(particle, fStack, sample_process, inv_decay_count);
fProcessSequence.SelectDecay(vParticle, projectile, sample_process,
inv_decay_count);
}
fProcessSequence.DoSecondaries(secondaries);
vParticle.Delete(); // last thing in Step function
}
}
private:
corsika::environment::Environment const& fEnvironment;
Tracking& fTracking;
ProcessList& fProcessSequence;
Stack& fStack;
environment::Environment const& fEnvironment;
TTracking& fTracking;
TProcessList& fProcessSequence;
TStack& fStack;
corsika::random::RNG& fRNG =
corsika::random::RNGManager::GetInstance().GetRandomStream("cascade");
};
......
......@@ -16,6 +16,7 @@
#include <corsika/cascade/Cascade.h>
#include <corsika/process/ProcessSequence.h>
#include <corsika/process/null_model/NullModel.h>
#include <corsika/process/stack_inspector/StackInspector.h>
#include <corsika/process/tracking_line/TrackingLine.h>
......@@ -75,13 +76,13 @@ public:
ProcessSplit(HEPEnergyType e)
: fEcrit(e) {}
template <typename Particle, typename T>
LengthType MaxStepLength(Particle&, T&) const {
template <typename Particle, typename Track>
LengthType MaxStepLength(Particle&, Track&) const {
return 1_m;
}
template <typename Particle, typename T, typename Stack>
EProcessReturn DoContinuous(Particle& p, T&, Stack&) {
template <typename Particle, typename Track>
EProcessReturn DoContinuous(Particle& p, Track&) {
fCalls++;
HEPEnergyType E = p.GetEnergy();
if (E < fEcrit) {
......@@ -115,11 +116,12 @@ TEST_CASE("Cascade", "[Cascade]") {
auto env = MakeDummyEnv();
tracking_line::TrackingLine<setup::Stack, setup::Trajectory> tracking(env);
stack_inspector::StackInspector<setup::Stack> p0(true);
// stack_inspector::StackInspector<setup::Stack> stackInspect(true);
null_model::NullModel nullModel;
const HEPEnergyType Ecrit = 85_MeV;
ProcessSplit p1(Ecrit);
auto sequence = p0 << p1;
auto sequence = nullModel << p1;
setup::Stack stack;
cascade::Cascade EAS(env, tracking, sequence, stack);
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment