IAP GITLAB

Skip to content
Snippets Groups Projects
Commit 182a4701 authored by ralfulrich's avatar ralfulrich
Browse files

style guide

parent 40b888f6
No related branches found
No related tags found
No related merge requests found
...@@ -43,8 +43,9 @@ target_link_libraries ( ...@@ -43,8 +43,9 @@ target_link_libraries (
CORSIKArandom CORSIKArandom
ProcessSibyll ProcessSibyll
CORSIKAcascade CORSIKAcascade
ProcessStackInspector # ProcessStackInspector
ProcessTrackingLine ProcessTrackingLine
ProcessNullModel
CORSIKAstackinterface CORSIKAstackinterface
CORSIKAprocesses CORSIKAprocesses
CORSIKAparticles CORSIKAparticles
......
...@@ -17,9 +17,19 @@ ...@@ -17,9 +17,19 @@
#include <corsika/random/ExponentialDistribution.h> #include <corsika/random/ExponentialDistribution.h>
#include <corsika/random/RNGManager.h> #include <corsika/random/RNGManager.h>
#include <corsika/random/UniformRealDistribution.h> #include <corsika/random/UniformRealDistribution.h>
#include <corsika/setup/SetupTrajectory.h> #include <corsika/stack/SecondaryView.h>
#include <corsika/units/PhysicalUnits.h> #include <corsika/units/PhysicalUnits.h>
#include <corsika/setup/SetupTrajectory.h>
/* see Issue 161, we need to include SetupStack only because we need
to globally define StackView. This is clearly not nice and should
be changed, when possible. It might be that StackView needs to be
templated in Cascade, but this would be even worse... so we don't
do that until it is really needed.
*/
#include <corsika/setup/SetupStack.h>
#include <cassert> #include <cassert>
#include <cmath> #include <cmath>
#include <iostream> #include <iostream>
...@@ -39,23 +49,22 @@ namespace corsika::cascade { ...@@ -39,23 +49,22 @@ namespace corsika::cascade {
* it very versatile. Via the template arguments physics models are * it very versatile. Via the template arguments physics models are
* plugged into the cascade simulation. * plugged into the cascade simulation.
* *
* <b>Tracking</b> must be a class according to the * <b>TTracking</b> must be a class according to the
* TrackingInterface providing the functions: * TrackingInterface providing the functions:
* <code>auto GetTrack(Particle const& p)</auto>, * <code>auto GetTrack(Particle const& p)</auto>,
* with the return type <code>geometry::Trajectory<corsika::geometry::Line> * with the return type <code>geometry::Trajectory<corsika::geometry::Line>
* </code> * </code>
* *
* <b>ProcessList</b> must be a ProcessSequence. * * <b>TProcessList</b> must be a ProcessSequence. *
* <b>Stack</b> is the storage object for particle data, i.e. with * <b>Stack</b> is the storage object for particle data, i.e. with
* Particle class type <code>Stack::ParticleType</code> * Particle class type <code>Stack::ParticleType</code>
* *
* *
*/ */
template <typename Tracking, typename ProcessList, typename Stack> template <typename TTracking, typename TProcessList, typename TStack>
class Cascade { class Cascade {
using Particle = typename Stack::ParticleType; using Particle = typename TStack::ParticleType;
using VolumeTreeNode = using VolumeTreeNode =
std::remove_pointer_t<decltype(((Particle*)nullptr)->GetNode())>; std::remove_pointer_t<decltype(((Particle*)nullptr)->GetNode())>;
using MediumInterface = typename VolumeTreeNode::IModelProperties; using MediumInterface = typename VolumeTreeNode::IModelProperties;
...@@ -68,8 +77,8 @@ namespace corsika::cascade { ...@@ -68,8 +77,8 @@ namespace corsika::cascade {
* Cascade class cannot be default constructed, but needs a valid * Cascade class cannot be default constructed, but needs a valid
* list of physics processes for configuration at construct time. * list of physics processes for configuration at construct time.
*/ */
Cascade(corsika::environment::Environment<MediumInterface> const& env, Tracking& tr, Cascade(corsika::environment::Environment<MediumInterface> const& env, TTracking& tr,
ProcessList& pl, Stack& stack) TProcessList& pl, TStack& stack)
: fEnvironment(env) : fEnvironment(env)
, fTracking(tr) , fTracking(tr)
, fProcessSequence(pl) , fProcessSequence(pl)
...@@ -125,15 +134,16 @@ namespace corsika::cascade { ...@@ -125,15 +134,16 @@ namespace corsika::cascade {
* New particles produced in one step are subject to further * New particles produced in one step are subject to further
* processing, e.g. thinning, etc. * processing, e.g. thinning, etc.
*/ */
void Step(Particle& particle) { void Step(Particle& vParticle) {
using namespace corsika;
using namespace corsika::units::si; using namespace corsika::units::si;
// determine geometric tracking // determine geometric tracking
auto [step, geomMaxLength, nextVol] = fTracking.GetTrack(particle); auto [step, geomMaxLength, nextVol] = fTracking.GetTrack(vParticle);
// determine combined total interaction length (inverse) // determine combined total interaction length (inverse)
InverseGrammageType const total_inv_lambda = InverseGrammageType const total_inv_lambda =
fProcessSequence.GetTotalInverseInteractionLength(particle, step); fProcessSequence.GetTotalInverseInteractionLength(vParticle, step);
// sample random exponential step length in grammage // sample random exponential step length in grammage
corsika::random::ExponentialDistribution expDist(1 / total_inv_lambda); corsika::random::ExponentialDistribution expDist(1 / total_inv_lambda);
...@@ -155,12 +165,12 @@ namespace corsika::cascade { ...@@ -155,12 +165,12 @@ namespace corsika::cascade {
next_interact); next_interact);
// determine the maximum geometric step length // determine the maximum geometric step length
LengthType const distance_max = fProcessSequence.MaxStepLength(particle, step); LengthType const distance_max = fProcessSequence.MaxStepLength(vParticle, step);
std::cout << "distance_max=" << distance_max << std::endl; std::cout << "distance_max=" << distance_max << std::endl;
// determine combined total inverse decay time // determine combined total inverse decay time
InverseTimeType const total_inv_lifetime = InverseTimeType const total_inv_lifetime =
fProcessSequence.GetTotalInverseLifetime(particle); fProcessSequence.GetTotalInverseLifetime(vParticle);
// sample random exponential decay time // sample random exponential decay time
corsika::random::ExponentialDistribution expDistDecay(1 / total_inv_lifetime); corsika::random::ExponentialDistribution expDistDecay(1 / total_inv_lifetime);
...@@ -169,9 +179,8 @@ namespace corsika::cascade { ...@@ -169,9 +179,8 @@ namespace corsika::cascade {
<< ", next_decay=" << next_decay << std::endl; << ", next_decay=" << next_decay << std::endl;
// convert next_decay from time to length [m] // convert next_decay from time to length [m]
LengthType const distance_decay = next_decay * particle.GetMomentum().norm() / LengthType const distance_decay = next_decay * vParticle.GetMomentum().norm() /
particle.GetEnergy() * vParticle.GetEnergy() * units::constants::c;
corsika::units::constants::c;
// take minimum of geometry, interaction, decay for next step // take minimum of geometry, interaction, decay for next step
auto const min_distance = auto const min_distance =
...@@ -180,52 +189,68 @@ namespace corsika::cascade { ...@@ -180,52 +189,68 @@ namespace corsika::cascade {
std::cout << " move particle by : " << min_distance << std::endl; std::cout << " move particle by : " << min_distance << std::endl;
// here the particle is actually moved along the trajectory to new position: // here the particle is actually moved along the trajectory to new position:
// std::visit(corsika::setup::ParticleUpdate<Particle>{particle}, step); // std::visit(setup::ParticleUpdate<Particle>{vParticle}, step);
particle.SetPosition(step.PositionFromArclength(min_distance)); vParticle.SetPosition(step.PositionFromArclength(min_distance));
// .... also update time, momentum, direction, ... // .... also update time, momentum, direction, ...
vParticle.SetTime(vParticle.GetTime() + min_distance / units::constants::c);
step.LimitEndTo(min_distance); step.LimitEndTo(min_distance);
// apply all continuous processes on particle + track // apply all continuous processes on particle + track
corsika::process::EProcessReturn status = process::EProcessReturn status = fProcessSequence.DoContinuous(vParticle, step);
fProcessSequence.DoContinuous(particle, step, fStack);
if (status == corsika::process::EProcessReturn::eParticleAbsorbed) { if (status == process::EProcessReturn::eParticleAbsorbed) {
std::cout << "Cascade: delete absorbed particle " << particle.GetPID() << " " std::cout << "Cascade: delete absorbed particle " << vParticle.GetPID() << " "
<< particle.GetEnergy() / 1_GeV << "GeV" << std::endl; << vParticle.GetEnergy() / 1_GeV << "GeV" << std::endl;
particle.Delete(); vParticle.Delete();
return; return;
} }
std::cout << "sth. happening before geometric limit ? " std::cout << "sth. happening before geometric limit ? "
<< ((min_distance < geomMaxLength) ? "yes" : "no") << std::endl; << ((min_distance < geomMaxLength) ? "yes" : "no") << std::endl;
/*
Create SecondaryView object on Stack. The data container
remains untouched and identical, and 'projectil' is identical
to 'vParticle' above this line. However,
projectil.AddSecondaries populate the SecondaryView, which can
then be used afterwards for further processing. Thus: it is
important to use projectle (and not vParticle) for Interaction,
and Decay!
*/
setup::StackView secondaries(vParticle);
[[maybe_unused]] auto projectile = secondaries.GetProjectile();
if (min_distance < distance_max) { // interaction to happen within geometric limit
// check whether decay or interaction limits this step
if (min_distance < geomMaxLength) { // interaction to happen within geometric limit if (min_distance < geomMaxLength) { // interaction to happen within geometric limit
if (min_distance == distance_interact) { if (min_distance == distance_interact) {
std::cout << "collide" << std::endl; std::cout << "collide" << std::endl;
InverseGrammageType const actual_inv_length = InverseGrammageType const actual_inv_length =
fProcessSequence.GetTotalInverseInteractionLength(particle, step); fProcessSequence.GetTotalInverseInteractionLength(vParticle, step);
corsika::random::UniformRealDistribution<InverseGrammageType> uniDist( random::UniformRealDistribution<InverseGrammageType> uniDist(actual_inv_length);
actual_inv_length);
const auto sample_process = uniDist(fRNG); const auto sample_process = uniDist(fRNG);
InverseGrammageType inv_lambda_count = 0. * meter * meter / gram; InverseGrammageType inv_lambda_count = 0. * meter * meter / gram;
fProcessSequence.SelectInteraction(particle, step, fStack, sample_process, fProcessSequence.SelectInteraction(vParticle, projectile, step, sample_process,
inv_lambda_count); inv_lambda_count);
} else if (min_distance == distance_decay) { } else if (min_distance == distance_decay) {
std::cout << "decay" << std::endl; std::cout << "decay" << std::endl;
InverseTimeType const actual_decay_time = InverseTimeType const actual_decay_time =
fProcessSequence.GetTotalInverseLifetime(particle); fProcessSequence.GetTotalInverseLifetime(vParticle);
corsika::random::UniformRealDistribution<InverseTimeType> uniDist( random::UniformRealDistribution<InverseTimeType> uniDist(actual_decay_time);
actual_decay_time);
const auto sample_process = uniDist(fRNG); const auto sample_process = uniDist(fRNG);
InverseTimeType inv_decay_count = 0 / second; InverseTimeType inv_decay_count = 0 / second;
fProcessSequence.SelectDecay(particle, fStack, sample_process, inv_decay_count); fProcessSequence.SelectDecay(vParticle, projectile, sample_process, inv_decay_count);
} else { // step-length limitation within volume } else { // step-length limitation within volume
std::cout << "step-length limitation" << std::endl; std::cout << "step-length limitation" << std::endl;
} }
fProcessSequence.DoSecondaries(secondaries);
vParticle.Delete(); // last thing in Step function
auto const assertion = [&] { auto const assertion = [&] {
auto const* numericalNodeAfterStep = auto const* numericalNodeAfterStep =
...@@ -244,9 +269,9 @@ namespace corsika::cascade { ...@@ -244,9 +269,9 @@ namespace corsika::cascade {
private: private:
corsika::environment::Environment<MediumInterface> const& fEnvironment; corsika::environment::Environment<MediumInterface> const& fEnvironment;
Tracking& fTracking; TTracking& fTracking;
ProcessList& fProcessSequence; TProcessList& fProcessSequence;
Stack& fStack; TStack& fStack;
corsika::random::RNG& fRNG = corsika::random::RNG& fRNG =
corsika::random::RNGManager::GetInstance().GetRandomStream("cascade"); corsika::random::RNGManager::GetInstance().GetRandomStream("cascade");
}; // namespace corsika::cascade }; // namespace corsika::cascade
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include <corsika/cascade/Cascade.h> #include <corsika/cascade/Cascade.h>
#include <corsika/process/ProcessSequence.h> #include <corsika/process/ProcessSequence.h>
#include <corsika/process/null_model/NullModel.h>
#include <corsika/process/stack_inspector/StackInspector.h> #include <corsika/process/stack_inspector/StackInspector.h>
#include <corsika/process/tracking_line/TrackingLine.h> #include <corsika/process/tracking_line/TrackingLine.h>
...@@ -74,13 +75,13 @@ public: ...@@ -74,13 +75,13 @@ public:
ProcessSplit(HEPEnergyType e) ProcessSplit(HEPEnergyType e)
: fEcrit(e) {} : fEcrit(e) {}
template <typename Particle, typename T> template <typename Particle, typename Track>
LengthType MaxStepLength(Particle&, T&) const { LengthType MaxStepLength(Particle&, Track&) const {
return 1_m; return 1_m;
} }
template <typename Particle, typename T, typename Stack> template <typename Particle, typename Track>
EProcessReturn DoContinuous(Particle& p, T&, Stack&) { EProcessReturn DoContinuous(Particle& p, Track&) {
fCalls++; fCalls++;
HEPEnergyType E = p.GetEnergy(); HEPEnergyType E = p.GetEnergy();
if (E < fEcrit) { if (E < fEcrit) {
...@@ -114,11 +115,12 @@ TEST_CASE("Cascade", "[Cascade]") { ...@@ -114,11 +115,12 @@ TEST_CASE("Cascade", "[Cascade]") {
auto env = MakeDummyEnv(); auto env = MakeDummyEnv();
tracking_line::TrackingLine tracking; tracking_line::TrackingLine tracking;
stack_inspector::StackInspector<TestCascadeStack> p0(true); stack_inspector::StackInspector<TestCascadeStack> stackInspect(true);
null_model::NullModel nullModel;
const HEPEnergyType Ecrit = 85_MeV; const HEPEnergyType Ecrit = 85_MeV;
ProcessSplit p1(Ecrit); ProcessSplit p1(Ecrit);
auto sequence = p0 << p1; auto sequence = nullModel /* << stackInspect*/ << p1;
TestCascadeStack stack; TestCascadeStack stack;
cascade::Cascade EAS(env, tracking, sequence, stack); cascade::Cascade EAS(env, tracking, sequence, stack);
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment