Forked from
Air Shower Physics / corsika
3090 commits behind the upstream repository.
-
ralfulrich authoredralfulrich authored
cascade_example.cc 5.91 KiB
/*
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/cascade/Cascade.h>
#include <corsika/process/ProcessSequence.h>
#include <corsika/process/energy_loss/EnergyLoss.h>
#include <corsika/process/stack_inspector/StackInspector.h>
#include <corsika/process/tracking_line/TrackingLine.h>
#include <corsika/setup/SetupEnvironment.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/environment/Environment.h>
#include <corsika/environment/HomogeneousMedium.h>
#include <corsika/environment/NuclearComposition.h>
#include <corsika/geometry/Sphere.h>
#include <corsika/process/sibyll/Decay.h>
#include <corsika/process/sibyll/Interaction.h>
#include <corsika/process/sibyll/NuclearInteraction.h>
#include <corsika/process/particle_cut/ParticleCut.h>
#include <corsika/process/track_writer/TrackWriter.h>
#include <corsika/units/PhysicalUnits.h>
#include <corsika/random/RNGManager.h>
#include <corsika/utl/CorsikaFenv.h>
#include <iostream>
#include <limits>
using namespace corsika;
using namespace corsika::process;
using namespace corsika::units;
using namespace corsika::particles;
using namespace corsika::random;
using namespace corsika::setup;
using namespace corsika::geometry;
using namespace corsika::environment;
using namespace std;
using namespace corsika::units::si;
//
// The example main program for a particle cascade
//
int main() {
const LengthType height_atmosphere = 112.8_km;
feenableexcept(FE_INVALID);
// initialize random number sequence(s)
random::RNGManager::GetInstance().RegisterRandomStream("cascade");
// setup environment, geometry
using EnvType = environment::Environment<setup::IEnvironmentModel>;
EnvType env;
auto& universe = *(env.GetUniverse());
const CoordinateSystem& rootCS = env.GetCoordinateSystem();
auto outerMedium = EnvType::CreateNode<Sphere>(
Point{rootCS, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
// fraction of oxygen
const float fox = 0.20946;
auto const props =
outerMedium
->SetModelProperties<environment::HomogeneousMedium<setup::IEnvironmentModel>>(
1_kg / (1_m * 1_m * 1_m),
environment::NuclearComposition(
std::vector<particles::Code>{particles::Code::Nitrogen,
particles::Code::Oxygen},
std::vector<float>{1.f - fox, fox}));
auto innerMedium = EnvType::CreateNode<Sphere>(Point{rootCS, 0_m, 0_m, 0_m}, 5000_m);
innerMedium->SetModelProperties(props);
outerMedium->AddChild(std::move(innerMedium));
universe.AddChild(std::move(outerMedium));
// setup particle stack, and add primary particle
setup::Stack stack;
stack.Clear();
const Code beamCode = Code::Nucleus;
const int nuclA = 4;
const int nuclZ = int(nuclA / 2.15 + 0.7);
const HEPMassType mass = GetNucleusMass(nuclA, nuclZ);
const HEPEnergyType E0 = nuclA * 1_TeV;
double theta = 0.;
double phi = 0.;
{
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const [px, py, pz] =
momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0);
auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << " phi=" << phi << endl;
cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl;
Point pos(rootCS, 0_m, 0_m,
height_atmosphere); // this is the CORSIKA 7 start of atmosphere/universe
stack.AddParticle(std::tuple<particles::Code, units::si::HEPEnergyType,
corsika::stack::MomentumVector, geometry::Point,
units::si::TimeType, unsigned short, unsigned short>{
beamCode, E0, plab, pos, 0_ns, nuclA, nuclZ});
}
// setup processes, decays and interactions
tracking_line::TrackingLine tracking;
stack_inspector::StackInspector<setup::Stack> stackInspect(1, true, E0);
const std::vector<particles::Code> trackedHadrons = {
particles::Code::PiPlus, particles::Code::PiMinus, particles::Code::KPlus,
particles::Code::KMinus, particles::Code::K0Long, particles::Code::K0Short};
random::RNGManager::GetInstance().RegisterRandomStream("s_rndm");
random::RNGManager::GetInstance().RegisterRandomStream("pythia");
process::sibyll::Interaction sibyll;
process::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
process::sibyll::Decay decay(trackedHadrons);
process::particle_cut::ParticleCut cut(20_GeV);
process::track_writer::TrackWriter trackWriter("tracks.dat");
process::energy_loss::EnergyLoss eLoss;
// assemble all processes into an ordered process list
auto sequence = stackInspect << sibyll << sibyllNuc << decay << eLoss << cut
<< trackWriter;
// define air shower object, run simulation
cascade::Cascade EAS(env, tracking, sequence, stack);
EAS.Init();
EAS.Run();
eLoss.PrintProfile(); // print longitudinal profile
cut.ShowResults();
const HEPEnergyType Efinal =
cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
cout << "total dEdX energy (GeV): " << eLoss.GetTotal() / 1_GeV << endl
<< "relative difference (%): " << eLoss.GetTotal() / E0 * 100 << endl;
}