Forked from
Air Shower Physics / corsika
3892 commits behind the upstream repository.
-
Felix Riehn authoredFelix Riehn authored
cascade_example.cc 17.18 KiB
/**
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/cascade/Cascade.h>
#include <corsika/process/ProcessSequence.h>
#include <corsika/process/stack_inspector/StackInspector.h>
#include <corsika/process/tracking_line/TrackingLine.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/random/RNGManager.h>
#include <corsika/cascade/SibStack.h>
#include <corsika/cascade/sibyll2.3c.h>
#include <corsika/process/sibyll/ParticleConversion.h>
#include <corsika/process/sibyll/ProcessDecay.h>
#include <corsika/units/PhysicalUnits.h>
using namespace corsika;
using namespace corsika::process;
using namespace corsika::units;
using namespace corsika::particles;
using namespace corsika::random;
using namespace corsika::setup;
#include <iostream>
#include <typeinfo>
using namespace std;
static int fCount = 0;
static EnergyType fEnergy = 0. * 1_GeV;
// FOR NOW: global static variables for ParticleCut process
// this is just wrong...
static EnergyType fEmEnergy;
static int fEmCount;
static EnergyType fInvEnergy;
static int fInvCount;
class ProcessEMCut : public corsika::process::BaseProcess<ProcessEMCut> {
public:
ProcessEMCut() {}
template <typename Particle>
bool isBelowEnergyCut(Particle& p) const {
// FOR NOW: center-of-mass energy hard coded
const EnergyType Ecm = sqrt(2. * p.GetEnergy() * 0.93827_GeV);
if (p.GetEnergy() < 50_GeV || Ecm < 10_GeV)
return true;
else
return false;
}
bool isEmParticle(Code pCode) const {
bool is_em = false;
// FOR NOW: switch
switch (pCode) {
case Code::Electron:
is_em = true;
break;
case Code::Gamma:
is_em = true;
break;
default:
break;
}
return is_em;
}
void defineEmParticles() const {
// create bool array identifying em particles
}
bool isInvisible(Code pCode) const {
bool is_inv = false;
// FOR NOW: switch
switch (pCode) {
case Code::NuE:
is_inv = true;
break;
case Code::NuEBar:
is_inv = true;
break;
case Code::NuMu:
is_inv = true;
break;
case Code::NuMuBar:
is_inv = true;
break;
case Code::MuPlus:
is_inv = true;
break;
case Code::MuMinus:
is_inv = true;
break;
default:
break;
}
return is_inv;
}
template <typename Particle>
double MinStepLength(Particle& p, setup::Trajectory&) const {
const Code pid = p.GetPID();
if (isEmParticle(pid) || isInvisible(pid)) {
cout << "ProcessCut: MinStep: next cut: " << 0. << endl;
return 0.;
} else {
double next_step = std::numeric_limits<double>::infinity();
cout << "ProcessCut: MinStep: next cut: " << next_step << endl;
return next_step;
}
}
template <typename Particle, typename Stack>
EProcessReturn DoContinuous(Particle& p, setup::Trajectory& t, Stack& s) const {
// cout << "ProcessCut: DoContinous: " << p.GetPID() << endl;
// cout << " is em: " << isEmParticle( p.GetPID() ) << endl;
// cout << " is inv: " << isInvisible( p.GetPID() ) << endl;
// const Code pid = p.GetPID();
// if( isEmParticle( pid ) ){
// cout << "removing em. particle..." << endl;
// fEmEnergy += p.GetEnergy();
// fEmCount += 1;
// p.Delete();
// return EProcessReturn::eParticleAbsorbed;
// }
// if ( isInvisible( pid ) ){
// cout << "removing inv. particle..." << endl;
// fInvEnergy += p.GetEnergy();
// fInvCount += 1;
// p.Delete();
// return EProcessReturn::eParticleAbsorbed;
// }
return EProcessReturn::eOk;
}
template <typename Particle, typename Stack>
void DoDiscrete(Particle& p, Stack& s) const {
cout << "ProcessCut: DoDiscrete: " << p.GetPID() << endl;
const Code pid = p.GetPID();
if (isEmParticle(pid)) {
cout << "removing em. particle..." << endl;
fEmEnergy += p.GetEnergy();
fEmCount += 1;
p.Delete();
} else if (isInvisible(pid)) {
cout << "removing inv. particle..." << endl;
fInvEnergy += p.GetEnergy();
fInvCount += 1;
p.Delete();
} else if (isBelowEnergyCut(p)) {
cout << "removing low en. particle..." << endl;
fEnergy += p.GetEnergy();
fCount += 1;
p.Delete();
}
}
void Init() {
fEmEnergy = 0. * 1_GeV;
fEmCount = 0;
fInvEnergy = 0. * 1_GeV;
fInvCount = 0;
fEnergy = 0. * 1_GeV;
// defineEmParticles();
}
void ShowResults() {
cout << " ******************************" << endl
<< " ParticleCut: " << endl
<< " energy in em. component (GeV): " << fEmEnergy / 1_GeV << endl
<< " no. of em. particles injected: " << fEmCount << endl
<< " energy in inv. component (GeV): " << fInvEnergy / 1_GeV << endl
<< " no. of inv. particles injected: " << fInvCount << endl
<< " ******************************" << endl;
}
EnergyType GetInvEnergy() { return fInvEnergy; }
EnergyType GetCutEnergy() { return fEnergy; }
EnergyType GetEmEnergy() { return fEmEnergy; }
private:
};
class ProcessSplit : public corsika::process::BaseProcess<ProcessSplit> {
public:
ProcessSplit() {}
void setTrackedParticlesStable() const {
/*
Sibyll is hadronic generator
only hadrons decay
*/
// set particles unstable
corsika::process::sibyll::setHadronsUnstable();
// make tracked particles stable
std::cout << "ProcessSplit: setting tracked hadrons stable.." << std::endl;
setup::Stack ds;
ds.NewParticle().SetPID(Code::PiPlus);
ds.NewParticle().SetPID(Code::PiMinus);
ds.NewParticle().SetPID(Code::KPlus);
ds.NewParticle().SetPID(Code::KMinus);
ds.NewParticle().SetPID(Code::K0Long);
ds.NewParticle().SetPID(Code::K0Short);
for (auto& p : ds) {
int s_id = process::sibyll::ConvertToSibyllRaw(p.GetPID());
// set particle stable by setting table value negative
s_csydec_.idb[s_id - 1] = (-1) * abs(s_csydec_.idb[s_id - 1]);
p.Delete();
}
}
template <typename Particle>
double MinStepLength(Particle& p, setup::Trajectory&) const {
// coordinate system, get global frame of reference
CoordinateSystem& rootCS = RootCoordinateSystem::GetInstance().GetRootCS();
const Code corsikaBeamId = p.GetPID();
// beam particles for sibyll : 1, 2, 3 for p, pi, k
// read from cross section code table
int kBeam = process::sibyll::GetSibyllXSCode(corsikaBeamId);
bool kInteraction = process::sibyll::CanInteract(corsikaBeamId);
/*
the target should be defined by the Environment,
ideally as full particle object so that the four momenta
and the boosts can be defined..
*/
// target nuclei: A < 18
// FOR NOW: assume target is oxygen
int kTarget = 16;
EnergyType Etot = p.GetEnergy() + kTarget * corsika::particles::Proton::GetMass();
super_stupid::MomentumVector Ptot(
rootCS, {0.0_newton_second, 0.0_newton_second, 0.0_newton_second});
// FOR NOW: assume target is at rest
super_stupid::MomentumVector pTarget(
rootCS, {0.0_newton_second, 0.0_newton_second, 0.0_newton_second});
Ptot += p.GetMomentum();
Ptot += pTarget;
// calculate cm. energy
EnergyType sqs = sqrt(Etot * Etot - Ptot.squaredNorm() * si::constants::cSquared);
double Ecm = sqs / 1_GeV;
std::cout << "ProcessSplit: "
<< "MinStep: input en: " << p.GetEnergy() / 1_GeV << endl
<< " beam can interact:" << kBeam << endl
<< " beam XS code:" << kBeam << endl
<< " beam pid:" << p.GetPID() << endl
<< " target mass number:" << kTarget << std::endl;
double next_step;
if (kInteraction) {
double prodCrossSection, dummy, dum1, dum2, dum3, dum4;
double dumdif[3];
if (kTarget == 1)
sib_sigma_hp_(kBeam, Ecm, dum1, dum2, prodCrossSection, dumdif, dum3, dum4);
else
sib_sigma_hnuc_(kBeam, kTarget, Ecm, prodCrossSection, dummy);
std::cout << "ProcessSplit: "
<< "MinStep: sibyll return: " << prodCrossSection << std::endl;
CrossSectionType sig = prodCrossSection * 1_mbarn;
std::cout << "ProcessSplit: "
<< "MinStep: CrossSection (mb): " << sig / 1_mbarn << std::endl;
const MassType nucleon_mass = 0.93827_GeV / corsika::units::si::constants::cSquared;
std::cout << "ProcessSplit: "
<< "nucleon mass " << nucleon_mass << std::endl;
// calculate interaction length in medium
double int_length = kTarget * (nucleon_mass / 1_g) / (sig / 1_cmeter / 1_cmeter);
// pick random step lenth
std::cout << "ProcessSplit: "
<< "interaction length (g/cm2): " << int_length << std::endl;
// add exponential sampling
int a = 0;
next_step = -int_length * log(s_rndm_(a));
} else
next_step = std::numeric_limits<double>::infinity();
/*
what are the units of the output? slant depth or 3space length?
*/
std::cout << "ProcessSplit: "
<< "next interaction (g/cm2): " << next_step << std::endl;
return next_step;
}
template <typename Particle, typename Stack>
EProcessReturn DoContinuous(Particle&, setup::Trajectory&, Stack&) const {
// corsika::utls::ignore(p);
return EProcessReturn::eOk;
}
template <typename Particle, typename Stack>
void DoDiscrete(Particle& p, Stack& s) const {
cout << "ProcessSplit: "
<< "DoDiscrete: " << p.GetPID() << " interaction? "
<< process::sibyll::CanInteract(p.GetPID()) << endl;
if (process::sibyll::CanInteract(p.GetPID())) {
cout << "defining coordinates" << endl;
// coordinate system, get global frame of reference
CoordinateSystem& rootCS = RootCoordinateSystem::GetInstance().GetRootCS();
QuantityVector<length_d> const coordinates{0_m, 0_m, 0_m};
Point pOrig(rootCS, coordinates);
/*
the target should be defined by the Environment,
ideally as full particle object so that the four momenta
and the boosts can be defined..
here we need: GetTargetMassNumber() or GetTargetPID()??
GetTargetMomentum() (zero in EAS)
*/
// FOR NOW: set target to proton
int kTarget = 1; // env.GetTargetParticle().GetPID();
cout << "defining target momentum.." << endl;
// FOR NOW: target is always at rest
const EnergyType Etarget = 0. * 1_GeV + corsika::particles::Proton::GetMass();
const auto pTarget = super_stupid::MomentumVector(
rootCS, 0. * 1_GeV / si::constants::c, 0. * 1_GeV / si::constants::c,
0. * 1_GeV / si::constants::c);
cout << "target momentum (GeV/c): "
<< pTarget.GetComponents() / 1_GeV * si::constants::c << endl;
cout << "beam momentum (GeV/c): "
<< p.GetMomentum().GetComponents() / 1_GeV * si::constants::c << endl;
// get energy of particle from stack
/*
stack is in GeV in lab. frame
convert to GeV in cm. frame
(assuming proton at rest as target AND
assuming no pT, i.e. shower frame-z is aligned with hadron-int-frame-z)
*/
// total energy: E_beam + E_target
// in lab. frame: E_beam + m_target*c**2
EnergyType E = p.GetEnergy();
EnergyType Etot = E + Etarget;
// total momentum
super_stupid::MomentumVector Ptot = p.GetMomentum(); // + pTarget;
// invariant mass, i.e. cm. energy
EnergyType Ecm = sqrt(Etot * Etot -
Ptot.squaredNorm() *
si::constants::cSquared); // sqrt( 2. * E * 0.93827_GeV );
/*
get transformation between Stack-frame and SibStack-frame
for EAS Stack-frame is lab. frame, could be different for CRMC-mode
the transformation should be derived from the input momenta
*/
const double gamma = Etot / Ecm;
const auto gambet = Ptot / (Ecm / si::constants::c);
std::cout << "ProcessSplit: "
<< " DoDiscrete: gamma:" << gamma << endl;
std::cout << "ProcessSplit: "
<< " DoDiscrete: gambet:" << gambet.GetComponents() << endl;
int kBeam = process::sibyll::ConvertToSibyllRaw(p.GetPID());
std::cout << "ProcessSplit: "
<< " DoDiscrete: E(GeV):" << E / 1_GeV << " Ecm(GeV): " << Ecm / 1_GeV
<< std::endl;
if (E < 8.5_GeV || Ecm < 10_GeV) {
std::cout << "ProcessSplit: "
<< " DoDiscrete: low en. particle, skipping.." << std::endl;
} else {
// Sibyll does not know about units..
double sqs = Ecm / 1_GeV;
// running sibyll, filling stack
sibyll_(kBeam, kTarget, sqs);
// running decays
setTrackedParticlesStable();
decsib_();
// print final state
int print_unit = 6;
sib_list_(print_unit);
// delete current particle
p.Delete();
// add particles from sibyll to stack
// link to sibyll stack
SibStack ss;
// SibStack does not know about momentum yet so we need counter to access momentum
// array in Sibyll
int i = -1;
super_stupid::MomentumVector Ptot_final(
rootCS, {0.0_newton_second, 0.0_newton_second, 0.0_newton_second});
for (auto& psib : ss) {
++i;
// skip particles that have decayed in Sibyll
if (abs(s_plist_.llist[i]) > 100) continue;
// transform energy to lab. frame, primitve
// compute beta_vec * p_vec
// arbitrary Lorentz transformation based on sibyll routines
const auto gammaBetaComponents = gambet.GetComponents();
const auto pSibyllComponents = psib.GetMomentum().GetComponents();
EnergyType en_lab = 0. * 1_GeV;
MomentumType p_lab_components[3];
en_lab = psib.GetEnergy() * gamma;
EnergyType pnorm = 0. * 1_GeV;
for (int j = 0; j < 3; ++j)
pnorm += (pSibyllComponents[j] * gammaBetaComponents[j] * si::constants::c) /
(gamma + 1.);
pnorm += psib.GetEnergy();
for (int j = 0; j < 3; ++j) {
p_lab_components[j] = pSibyllComponents[j] - (-1) * pnorm *
gammaBetaComponents[j] /
si::constants::c;
en_lab -=
(-1) * pSibyllComponents[j] * gammaBetaComponents[j] * si::constants::c;
}
// add to corsika stack
auto pnew = s.NewParticle();
pnew.SetEnergy(en_lab);
pnew.SetPID(process::sibyll::ConvertFromSibyll(psib.GetPID()));
corsika::geometry::QuantityVector<momentum_d> p_lab_c{
p_lab_components[0], p_lab_components[1], p_lab_components[2]};
pnew.SetMomentum(super_stupid::MomentumVector(rootCS, p_lab_c));
Ptot_final += pnew.GetMomentum();
}
// cout << "tot. momentum final (GeV/c): " << Ptot_final.GetComponents() / 1_GeV *
// si::constants::c << endl;
}
}
}
void Init() {
fCount = 0;
corsika::random::RNGManager& rmng = corsika::random::RNGManager::GetInstance();
;
const std::string str_name = "s_rndm";
rmng.RegisterRandomStream(str_name);
// test random number generator
std::cout << "ProcessSplit: "
<< " test sequence of random numbers." << std::endl;
int a = 0;
for (int i = 0; i < 8; ++i) std::cout << i << " " << s_rndm_(a) << std::endl;
// initialize Sibyll
sibyll_ini_();
setTrackedParticlesStable();
}
int GetCount() { return fCount; }
EnergyType GetEnergy() { return fEnergy; }
private:
};
double s_rndm_(int&) {
static corsika::random::RNG& rmng =
corsika::random::RNGManager::GetInstance().GetRandomStream("s_rndm");
;
return rmng() / (double)rmng.max();
}
int main() {
CoordinateSystem& rootCS = RootCoordinateSystem::GetInstance().GetRootCS();
tracking_line::TrackingLine<setup::Stack> tracking;
stack_inspector::StackInspector<setup::Stack> p0(true);
ProcessSplit p1;
corsika::process::sibyll::ProcessDecay p2;
ProcessEMCut p3;
const auto sequence = p0 + p1 + p2 + p3;
setup::Stack stack;
corsika::cascade::Cascade EAS(tracking, sequence, stack);
stack.Clear();
auto particle = stack.NewParticle();
EnergyType E0 = 100_GeV;
MomentumType P0 = sqrt(E0 * E0 - 0.93827_GeV * 0.93827_GeV) / si::constants::c;
auto plab = super_stupid::MomentumVector(rootCS, 0. * 1_GeV / si::constants::c,
0. * 1_GeV / si::constants::c, P0);
particle.SetEnergy(E0);
particle.SetMomentum(plab);
particle.SetPID(Code::Proton);
EAS.Init();
EAS.Run();
cout << "Result: E0=" << E0 / 1_GeV
<< "GeV, particles below energy threshold =" << p1.GetCount() << endl;
cout << "total energy below threshold (GeV): " << p1.GetEnergy() / 1_GeV << std::endl;
p3.ShowResults();
cout << "total energy (GeV): "
<< (p3.GetCutEnergy() + p3.GetInvEnergy() + p3.GetEmEnergy()) / 1_GeV << endl;
}