cascade_experiment.cc
The snippet can be accessed without any authentication.
Authored by
Martin Ness
Please be not confused about the three loops. Merged with a feature branch from me it generate some csv data around the step function from cascade.
cascade_experiment.cc 7.48 KiB
/*
* (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu
*
* See file AUTHORS for a list of contributors.
*
* This software is distributed under the terms of the GNU General Public
* Licence version 3 (GPL Version 3). See file LICENSE for a full version of
* the license.
*/
#include <corsika/cascade/Cascade.h>
#include <corsika/process/ProcessSequence.h>
#include <corsika/process/energy_loss/EnergyLoss.h>
#include <corsika/process/stack_inspector/StackInspector.h>
#include <corsika/process/tracking_line/TrackingLine.h>
#include <corsika/setup/SetupEnvironment.h>
#include <corsika/setup/SetupStack.h>
#include <corsika/setup/SetupTrajectory.h>
#include <corsika/environment/Environment.h>
#include <corsika/environment/BaseExponential.h>
#include <corsika/environment/FlatExponential.h>
#include <corsika/environment/IMediumModel.h>
#include <corsika/environment/HomogeneousMedium.h>
#include <corsika/environment/NuclearComposition.h>
#include <corsika/geometry/Sphere.h>
#include <corsika/process/sibyll/Decay.h>
#include <corsika/process/sibyll/NuclearInteraction.h>
#include <corsika/process/sibyll/Interaction.h>
#include <corsika/process/particle_cut/ParticleCut.h>
#include <corsika/process/track_writer/TrackWriter.h>
#include <corsika/units/PhysicalUnits.h>
#include <corsika/random/RNGManager.h>
#include <corsika/utl/CorsikaFenv.h>
#include <iostream>
#include <limits>
using namespace corsika;
using namespace corsika::process;
using namespace corsika::units;
using namespace corsika::particles;
using namespace corsika::random;
using namespace corsika::setup;
using namespace corsika::geometry;
using namespace corsika::environment;
using namespace std;
using namespace corsika::units::si;
//
// The example main program for a particle cascade
//
int main() {
const LengthType height_atmosphere = 112.8_km;
feenableexcept(FE_INVALID);
// initialize random number sequence(s)
random::RNGManager::GetInstance().RegisterRandomStream("cascade");
// setup environment, geometry
using EnvType = environment::Environment<corsika::environment::IMediumModel>;
EnvType env;
auto& universe = *(env.GetUniverse());
const CoordinateSystem& rootCS = env.GetCoordinateSystem();
// FlatExponential Modell
auto theMedium = EnvType::CreateNode<Sphere>(
Point{rootCS, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity());
auto constexpr temperature = 295_K; // AIRES default temperature for isothermal model
auto constexpr lambda =
-constants::R * temperature / (constants::g_sub_n * 28.966_g / mole);
// 1036 g/cm² taken from AIRES code
auto constexpr rho0 = -1036_g / square(1_cm) / lambda;
using FlatExp = environment::FlatExponential<environment::IMediumModel>;
theMedium->SetModelProperties<FlatExp>(
Point{rootCS, 0_m, 0_m, 0_m}, Vector<dimensionless_d>{rootCS, {0., 0., 1.}}, rho0,
lambda,
environment::NuclearComposition(
std::vector<particles::Code>{particles::Code::Nitrogen,
particles::Code::Oxygen},
std::vector<float>{
0.7847f,
1.f - 0.7847f}
)
); // values taken from AIRES manual, Ar removed for now
universe.AddChild(std::move(theMedium));
// setup particle stack
setup::Stack stack;
stack.Clear();
// primary particle
const Code beamCode = Code::Nucleus;
const int nuclA = 4;
const int nuclZ = int(nuclA / 2.15 + 0.7);
const HEPMassType mass = GetNucleusMass(nuclA, nuclZ);
HEPEnergyType E0;
double theta;
// particle angle
for (unsigned int j = 0; j <= 70; j += 10) {
theta = static_cast<double>(j);
// particle energy
for (HEPEnergyType i = 10_GeV; i <= 100_TeV; i += 100_GeV) {
E0 = nuclA * i;
// run number
for (unsigned int run = 0; run < 1000; run++) {
std::cout << "### work with theta=" << theta
<< " E0=" << E0
<< " run=" << run
<< std::endl;
// initialize random number sequence(s) new
std::stringstream seed;
seed << "cascade" << i << j << run;
random::RNGManager::GetInstance().RegisterRandomStream(seed.str());
double phi = 0.;
{
auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) {
return sqrt((Elab - m) * (Elab + m));
};
HEPMomentumType P0 = elab2plab(E0, mass);
auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) {
return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi),
-ptot * cos(theta));
};
auto const[px, py, pz] =
momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0);
auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz});
cout << "input particle: " << beamCode << endl;
cout << "input angles: theta=" << theta << " phi=" << phi << endl;
cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl;
Point pos(rootCS, 0_m, 0_m,
height_atmosphere); // this is the CORSIKA 7 start of atmosphere/universe
stack.AddParticle(std::tuple<particles::Code, units::si::HEPEnergyType,
corsika::stack::MomentumVector, geometry::Point,
units::si::TimeType, unsigned short, unsigned short>{
beamCode, E0, plab, pos, 0_ns, nuclA, nuclZ});
}
// setup processes, decays and interactions
tracking_line::TrackingLine tracking;
stack_inspector::StackInspector<setup::Stack> stackInspect(1, true, E0);
random::RNGManager::GetInstance().RegisterRandomStream("s_rndm");
random::RNGManager::GetInstance().RegisterRandomStream("pythia");
process::sibyll::Interaction sibyll;
process::sibyll::NuclearInteraction sibyllNuc(sibyll, env);
process::sibyll::Decay decay;
// cascade with only HE model ==> HE cut
process::particle_cut::ParticleCut cut(1_GeV);
process::track_writer::TrackWriter trackWriter("tracks.dat");
process::energy_loss::EnergyLoss eLoss;
// assemble all processes into an ordered process list
auto sequence = stackInspect << sibyll
<< sibyllNuc
<< decay
<< eLoss
<< cut
<< trackWriter;
// define air shower object, run simulation
cascade::Cascade EAS(env, tracking, sequence, stack);
EAS.Init();
EAS.Run();
eLoss.PrintProfile(); // print longitudinal profile
cut.ShowResults();
const HEPEnergyType Efinal =
cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy();
cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl
<< "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl;
cout << "total dEdX energy (GeV): " << eLoss.GetTotal() / 1_GeV << endl
<< "relative difference (%): " << eLoss.GetTotal() / E0 * 100 << endl;
}
}
}
}
Please register or sign in to comment