/* * (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/framework/core/PhysicalUnits.hpp> #include <corsika/framework/core/Logging.hpp> #include <array> #include <sstream> #include <catch2/catch.hpp> using namespace corsika; TEST_CASE("PhysicalUnits", "[Units]") { logging::set_level(logging::level::info); corsika_logger->set_pattern("[%n:%^%-8l%$] custom pattern: %v"); SECTION("Consistency") { CHECK(1_m / 1_m == Approx(1)); // CHECK_FALSE( 1_m/1_s == 1 ); // static assert } SECTION("Constructors") { [[maybe_unused]] auto E1 = 10_GeV; CHECK(E1 == 10_GeV); LengthType l1 = 10_nm; [[maybe_unused]] auto l2 = l1; CHECK(l2 == l1); LengthType arr0[5]; arr0[0] = 5_m; [[maybe_unused]] LengthType arr1[2] = {{1_mm}, {2_cm}}; [[maybe_unused]] std::array<HEPEnergyType, 4> arr2; // empty array [[maybe_unused]] std::array<HEPEnergyType, 4> arr3 = {1_GeV, 1_eV, 5_MeV}; auto p1 = 10_s * newton; CHECK(p1 == 10_s * newton); } SECTION("Powers in literal units") { CHECK(1_s / 1_ds == Approx(1e1)); CHECK(1_m / 1_cm == Approx(1e2)); CHECK(1_m / 1_mm == Approx(1e3)); CHECK(1_V / 1_uV == Approx(1e6)); CHECK(1_s / 1_ns == Approx(1e9)); CHECK(1_eV / 1_peV == Approx(1e12)); CHECK(1_A / 1_fA == Approx(1e15)); CHECK(1_mol / 1_amol == Approx(1e18)); CHECK(1_K / 1_zK == Approx(1e21)); CHECK(1_K / 1_yK == Approx(1e24)); CHECK(1_b / 1_mb == Approx(1e3)); CHECK(1_A / 1_hA == Approx(1e-2)); CHECK(1_m / 1_km == Approx(1e-3)); CHECK(1_m / 1_Mm == Approx(1e-6)); CHECK(1_V / 1_GV == Approx(1e-9)); CHECK(1_s / 1_Ts == Approx(1e-12)); CHECK(1_eV / 1_PeV == Approx(1e-15)); CHECK(1_A / 1_EA == Approx(1e-18)); CHECK(1_K / 1_ZK == Approx(1e-21)); CHECK(1_mol / 1_Ymol == Approx(1e-24)); CHECK(std::min(1_A, 2_A) == 1_A); } SECTION("Powers and units") { CHECK(1 * ampere / 1_A == Approx(1e0)); CHECK(mega * bar / bar == Approx(1e6)); } SECTION("Formulas") { const HEPEnergyType E2 = 20_GeV * 2; CHECK(E2 == 40_GeV); CHECK(E2 / 1_GeV == Approx(40)); const MassType m = 1_kg; const SpeedType v = 1_m / 1_s; CHECK(m * v == 1_s * newton); const double lgE = log10(E2 / 1_GeV); CHECK(lgE == Approx(log10(40.))); const auto E3 = E2 + 100_GeV + pow(10, lgE) * 1_GeV; CHECK(E3 == 180_GeV); CHECK(sqrt(5_GeV * 5_GeV) / 5_GeV == Approx(1)); } SECTION("Output") { { const HEPEnergyType E = 5_eV; std::stringstream stream; stream << E; CHECK(stream.str() == std::string("5 eV")); } { const HEPEnergyType E = 5_EeV; std::stringstream stream; stream << E; CHECK(stream.str() == std::string("5e+18 eV")); } } SECTION("Special") { const LengthType farAway = std::numeric_limits<double>::infinity() * meter; CHECK(farAway > 100000_m); CHECK_FALSE(farAway < 1e19 * meter); } SECTION("static_pow") { double x = 235.7913; CHECK(1 == static_pow<0, double>(x)); CHECK(x == static_pow<1, double>(x)); CHECK(x * x == static_pow<2, double>(x)); CHECK(1 / x == static_pow<-1, double>(x)); CHECK(1 / x / x == static_pow<-2, double>(x)); } SECTION("HEP/SI conversion") { auto const invEnergy = 1 / 197.326978_MeV; // should be convertible to length or time LengthType const length = convert_HEP_to_SI<LengthType::dimension_type>(invEnergy); CHECK((length / 1_fm) == Approx(1)); TimeType const time = convert_HEP_to_SI<TimeType::dimension_type>(invEnergy); CHECK((time / (1_fm / constants::c)) == Approx(1)); auto const protonMass = 938.272'081'3_MeV; // convertible to mass or SI energy MassType protonMassSI = convert_HEP_to_SI<MassType::dimension_type>(protonMass); CHECK((protonMassSI / 1.672'621'898e-27_kg) == Approx(1)); CHECK((protonMassSI / (1.007'276 * constants::u)) == Approx(1)); } SECTION("SI/HEP conversion") { CHECK(convert_SI_to_HEP(constants::c) == Approx(1)); CHECK(convert_SI_to_HEP(constants::hBar) == Approx(1)); { auto const invLength = 1 / 197.326978_fm; // should be convertible to HEPEnergy HEPEnergyType const energy = convert_SI_to_HEP(invLength); CHECK(energy / 1_MeV == Approx(1)); } CHECK(convert_SI_to_HEP(6.5823e-25_s) * 1_GeV == Approx(1).epsilon(1e-4)); CHECK(convert_SI_to_HEP(3.8938e-32 * meter * meter) * 1_GeV * 1_GeV == Approx(1).epsilon(1e-4)); } }