/* * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu * * See file AUTHORS for a list of contributors. * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/framework/core/Cascade.hpp> #include <corsika/framework/core/PhysicalUnits.hpp> #include <corsika/framework/geometry/Plane.hpp> #include <corsika/framework/geometry/Sphere.hpp> #include <corsika/framework/random/RNGManager.hpp> #include <corsika/framework/sequence/ProcessSequence.hpp> #include <corsika/framework/sequence/StackProcess.hpp> #include <corsika/framework/utility/CorsikaFenv.hpp> #include <corsika/setup/SetupStack.hpp> #include <corsika/setup/SetupTrajectory.hpp> #include <corsika/media/Environment.hpp> #include <corsika/media/FlatExponential.hpp> #include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp> #include <corsika/media/NuclearComposition.hpp> #include <corsika/modules/energy_loss/EnergyLoss.hpp> #include <corsika/modules/observation_plane/ObservationPlane.hpp> #include <corsika/modules/particle_cut/ParticleCut.hpp> #include <corsika/modules/sibyll/Decay.hpp> #include <corsika/modules/sibyll/Interaction.hpp> #include <corsika/modules/sibyll/NuclearInteraction.hpp> #include <corsika/modules/switch_process/SwitchProcess.hpp> #include <corsika/modules/track_writer/TrackWriter.hpp> #include <corsika/modules/tracking_line/TrackingLine.hpp> #include <corsika/modules/urqmd/UrQMD.hpp> #include <iomanip> #include <iostream> #include <limits> #include <typeinfo> using namespace corsika; using namespace corsika::setup; using namespace corsika::units::si; using namespace std; void registerRandomStreams() { corsika::RNGManager::GetInstance().RegisterRandomStream("cascade"); corsika::RNGManager::GetInstance().RegisterRandomStream("s_rndm"); // corsika::RNGManager::GetInstance().RegisterRandomStream("pythia"); corsika::RNGManager::GetInstance().RegisterRandomStream("UrQMD"); corsika::RNGManager::GetInstance().SeedAll(); } int main() { feenableexcept(FE_INVALID); // initialize random number sequence(s) registerRandomStreams(); // setup environment, geometry using EnvType = Environment<setup::IEnvironmentModel>; EnvType env; const CoordinateSystem& rootCS = env.GetCoordinateSystem(); corsika::LayeredSphericalAtmosphereBuilder builder(Point{rootCS, 0_m, 0_m, 0_m}); builder.setNuclearComposition( {{corsika::Code::Nitrogen, corsika::Code::Oxygen}, {0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km); builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km); builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km); builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km); builder.addLinearLayer(1e9_cm, 112.8_km); builder.assemble(env); // setup particle stack, and add primary particle setup::Stack stack; stack.Clear(); const Code beamCode = Code::Proton; auto const mass = corsika::GetMass(beamCode); const HEPEnergyType E0 = 0.1_PeV; double theta = 0.; double phi = 0.; Point const injectionPos( rootCS, 0_m, 0_m, 112.8_km * 0.999 + builder.earthRadius); // this is the CORSIKA 7 start of atmosphere/universe // { auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) { return sqrt((Elab - m) * (Elab + m)); }; HEPMomentumType P0 = elab2plab(E0, mass); auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) { return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi), -ptot * cos(theta)); }; auto const [px, py, pz] = momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0); auto plab = corsika::MomentumVector(rootCS, {px, py, pz}); std::cout << "input particle: " << beamCode << std::endl; std::cout << "input angles: theta=" << theta << " phi=" << phi << std::endl; std::cout << "input momentum: " << plab.GetComponents() / 1_GeV << std::endl; stack.AddParticle( std::tuple<corsika::Code, units::si::HEPEnergyType, corsika::MomentumVector, corsika::Point, units::si::TimeType>{beamCode, E0, plab, injectionPos, 0_ns}); // } Line const line(injectionPos, plab.normalized() * 1_m * 1_Hz); auto const velocity = line.GetV0().norm(); auto const observationHeight = 1.425_km + builder.earthRadius; setup::Trajectory const showerAxis(line, (112.8_km - observationHeight) / velocity); // setup processes, decays and interactions corsika::sibyll::Interaction sibyll; corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env); corsika::sibyll::Decay decay; corsika::particle_cut::ParticleCut cut(5_GeV); corsika::track_writer::TrackWriter trackWriter("tracks.dat"); corsika::energy_loss::EnergyLoss eLoss(showerAxis); Plane const obsPlane(Point(rootCS, 0_m, 0_m, observationHeight), Vector<dimensionless_d>(rootCS, {0., 0., 1.})); corsika::observation_plane::ObservationPlane observationLevel(obsPlane, "particles.dat"); // assemble all processes into an ordered process list corsika::urqmd::UrQMD urqmd; auto sibyllSequence = sibyll << sibyllNuc; corsika::switch_process::SwitchProcess switchProcess(urqmd, sibyllSequence, 55_GeV); auto sequence = switchProcess << decay << eLoss << cut << observationLevel << trackWriter; // define air shower object, run simulation tracking_line::TrackingLine tracking; corsika::Cascade EAS(env, tracking, sequence, stack); EAS.Init(); EAS.Run(); eLoss.PrintProfile(); // print longitudinal profile cut.ShowResults(); const HEPEnergyType Efinal = cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy(); std::cout << "total cut energy (GeV): " << Efinal / 1_GeV << std::endl << "relative difference (%): " << (Efinal / E0 - 1) * 100 << std::endl; std::cout << "total dEdX energy (GeV): " << eLoss.GetTotal() / 1_GeV << std::endl << "relative difference (%): " << eLoss.GetTotal() / E0 * 100 << std::endl; std::ofstream finish("finished"); finish << "run completed without error" << std::endl; }