/* * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ /* clang-format off */ // InteractionCounter used boost/histogram, which // fails if boost/type_traits have been included before. Thus, we have // to include it first... #include <corsika/framework/process/InteractionCounter.hpp> /* clang-format on */ #include <corsika/framework/process/ProcessSequence.hpp> #include <corsika/framework/process/SwitchProcessSequence.hpp> #include <corsika/framework/process/InteractionCounter.hpp> #include <corsika/framework/geometry/Plane.hpp> #include <corsika/framework/geometry/Sphere.hpp> #include <corsika/framework/geometry/PhysicalGeometry.hpp> #include <corsika/framework/core/Logging.hpp> #include <corsika/framework/core/PhysicalUnits.hpp> #include <corsika/framework/core/Cascade.hpp> #include <corsika/framework/core/EnergyMomentumOperations.hpp> #include <corsika/framework/utility/SaveBoostHistogram.hpp> #include <corsika/framework/utility/CorsikaFenv.hpp> #include <corsika/framework/random/RNGManager.hpp> #include <corsika/output/OutputManager.hpp> #include <corsika/modules/writers/SubWriter.hpp> #include <corsika/modules/writers/EnergyLossWriter.hpp> #include <corsika/modules/writers/LongitudinalWriter.hpp> #include <corsika/media/Environment.hpp> #include <corsika/media/FlatExponential.hpp> #include <corsika/media/HomogeneousMedium.hpp> #include <corsika/media/IMagneticFieldModel.hpp> #include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp> #include <corsika/media/NuclearComposition.hpp> #include <corsika/media/MediumPropertyModel.hpp> #include <corsika/media/UniformMagneticField.hpp> #include <corsika/media/ShowerAxis.hpp> #include <corsika/media/CORSIKA7Atmospheres.hpp> #include <corsika/modules/BetheBlochPDG.hpp> #include <corsika/modules/LongitudinalProfile.hpp> #include <corsika/modules/ObservationPlane.hpp> #include <corsika/modules/OnShellCheck.hpp> #include <corsika/modules/StackInspector.hpp> #include <corsika/modules/TrackWriter.hpp> #include <corsika/modules/ParticleCut.hpp> #include <corsika/modules/Pythia8.hpp> #include <corsika/modules/Sibyll.hpp> #include <corsika/modules/Epos.hpp> #include <corsika/modules/UrQMD.hpp> #include <corsika/modules/PROPOSAL.hpp> #include <corsika/modules/QGSJetII.hpp> #include <corsika/setup/SetupStack.hpp> #include <corsika/setup/SetupTrajectory.hpp> #include <CLI/App.hpp> #include <CLI/Formatter.hpp> #include <CLI/Config.hpp> #include <iomanip> #include <limits> #include <string> /* NOTE, WARNING, ATTENTION The .../Random.hpppp implement the hooks of external modules to the C8 random number generator. It has to occur excatly ONCE per linked executable. If you include the header below multiple times and link this togehter, it will fail. */ #include <corsika/modules/Random.hpp> using namespace corsika; using namespace std; using Particle = setup::Stack::particle_type; void registerRandomStreams(int seed) { RNGManager<>::getInstance().registerRandomStream("cascade"); RNGManager<>::getInstance().registerRandomStream("qgsjet"); RNGManager<>::getInstance().registerRandomStream("sibyll"); RNGManager<>::getInstance().registerRandomStream("epos"); RNGManager<>::getInstance().registerRandomStream("pythia"); RNGManager<>::getInstance().registerRandomStream("urqmd"); RNGManager<>::getInstance().registerRandomStream("proposal"); if (seed == 0) { std::random_device rd; seed = rd(); CORSIKA_LOG_INFO("random seed (auto) {} ", seed); } else { CORSIKA_LOG_INFO("random seed {} ", seed); } RNGManager<>::getInstance().setSeed(seed); } template <typename T> using MyExtraEnv = MediumPropertyModel<UniformMagneticField<T>>; int main(int argc, char** argv) { // the main command line description CLI::App app{"Simulate standard (downgoing) showers with CORSIKA 8."}; // some options that we want to fill in int A, Z, nevent = 0; // the following section adds the options to the parser // we start by definining a sub-group for the primary ID auto opt_Z = app.add_option("-Z", Z, "Atomic number for primary") ->check(CLI::Range(0, 26)) ->group("Primary"); auto opt_A = app.add_option("-A", A, "Atomic mass number for primary") ->needs(opt_Z) ->check(CLI::Range(1, 58)) ->group("Primary"); app.add_option("-p,--pdg", "PDG code for primary.") ->excludes(opt_A) ->excludes(opt_Z) ->group("Primary"); // the remainding options app.add_option("-E,--energy", "Primary energy in GeV") ->required() ->check(CLI::PositiveNumber) ->group("Primary"); app.add_option("-z,--zenith", "Primary zenith angle (deg)") ->required() ->default_val(0.) ->check(CLI::Range(0, 90)) ->group("Primary"); app.add_option("-a,--azimuth", "Primary azimuth angle (deg)") ->default_val(0.) ->check(CLI::Range(0, 360)) ->group("Primary"); app.add_option("-N,--nevent", nevent, "The number of events/showers to run.") ->required() ->check(CLI::PositiveNumber) ->group("Library/Output"); app.add_option("-f,--filename", "Filename for output library.") ->required() ->default_val("corsika_library") ->check(CLI::NonexistentPath) ->group("Library/Output"); app.add_option("-s,--seed", "The random number seed.") ->default_val(0) ->check(CLI::NonNegativeNumber) ->group("Misc."); bool force_interaction = false; app.add_flag("--force-interaction", force_interaction, "Force the location of the first interaction.") ->group("Misc."); app.add_option("-v,--verbosity", "Verbosity level: warn, info, debug, trace.") ->default_val("info") ->check(CLI::IsMember({"warn", "info", "debug", "trace"})) ->group("Misc."); // parse the command line options into the variables CLI11_PARSE(app, argc, argv); if (app.count("--verbosity")) { string const loglevel = app["verbosity"]->as<string>(); if (loglevel == "warn") { logging::set_level(logging::level::warn); } else if (loglevel == "info") { logging::set_level(logging::level::info); } else if (loglevel == "debug") { logging::set_level(logging::level::debug); } else if (loglevel == "trace") { #ifndef DEBUG CORSIKA_LOG_ERROR("trace log level requires a Debug build."); return 1; #endif logging::set_level(logging::level::trace); } } // check that we got either PDG or A/Z // this can be done with option_groups but the ordering // gets all messed up if (app.count("--pdg") == 0) { if ((app.count("-A") == 0) || (app.count("-Z") == 0)) { CORSIKA_LOG_ERROR("If --pdg is not provided, then both -A and -Z are required."); return 1; } } // initialize random number sequence(s) registerRandomStreams(app["--seed"]->as<int>()); /* === START: SETUP ENVIRONMENT AND ROOT COORDINATE SYSTEM === */ using EnvType = setup::Environment; EnvType env; CoordinateSystemPtr const& rootCS = env.getCoordinateSystem(); Point const center{rootCS, 0_m, 0_m, 0_m}; // build a Linsley US Standard atmosphere into `env` create_5layer_atmosphere<setup::EnvironmentInterface, MyExtraEnv>( env, AtmosphereId::LinsleyUSStd, center, Medium::AirDry1Atm, MagneticFieldVector{rootCS, 0_T, 50_uT, 0_T}); /* === END: SETUP ENVIRONMENT AND ROOT COORDINATE SYSTEM === */ ofstream atmout("earth.dat"); for (LengthType h = 0_m; h < 110_km; h += 100_m) { Point const ptest{rootCS, 0_m, 0_m, constants::EarthRadius::Mean + h}; auto rho = env.getUniverse()->getContainingNode(ptest)->getModelProperties().getMassDensity( ptest); atmout << h / 1_m << " " << rho / 1_kg * cube(1_m) << "\n"; } atmout.close(); /* === START: CONSTRUCT PRIMARY PARTICLE === */ // parse the primary ID as a PDG or A/Z code Code beamCode; // check if we want to use a PDG code instead if (app.count("--pdg") > 0) { beamCode = convert_from_PDG(PDGCode(app["--pdg"]->as<int>())); } else { // check manually for proton and neutrons if ((A == 1) && (Z == 1)) beamCode = Code::Proton; else if ((A == 1) && (Z == 0)) beamCode = Code::Neutron; else beamCode = get_nucleus_code(A, Z); } HEPEnergyType mass = get_mass(beamCode); // particle energy HEPEnergyType const E0 = 1_GeV * app["--energy"]->as<double>(); // direction of the shower in (theta, phi) space auto const thetaRad = app["--zenith"]->as<double>() / 180. * M_PI; auto const phiRad = app["--azimuth"]->as<double>() / 180. * M_PI; // convert Elab to Plab HEPMomentumType P0 = calculate_momentum(E0, mass); // convert the momentum to the zenith and azimuth angle of the primary auto const [px, py, pz] = std::make_tuple(P0 * sin(thetaRad) * cos(phiRad), P0 * sin(thetaRad) * sin(phiRad), -P0 * cos(thetaRad)); auto plab = MomentumVector(rootCS, {px, py, pz}); /* === END: CONSTRUCT PRIMARY PARTICLE === */ /* === START: CONSTRUCT GEOMETRY === */ auto const observationHeight = 0_km + constants::EarthRadius::Mean; auto const injectionHeight = 111.75_km + constants::EarthRadius::Mean; auto const t = -observationHeight * cos(thetaRad) + sqrt(-static_pow<2>(sin(thetaRad) * observationHeight) + static_pow<2>(injectionHeight)); Point const showerCore{rootCS, 0_m, 0_m, observationHeight}; Point const injectionPos = showerCore + DirectionVector{rootCS, {-sin(thetaRad) * cos(phiRad), -sin(thetaRad) * sin(phiRad), cos(thetaRad)}} * t; // we make the axis much longer than the inj-core distance since the // profile will go beyond the core, depending on zenith angle ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.2, env}; /* === END: CONSTRUCT GEOMETRY === */ // create the output manager that we then register outputs with OutputManager output(app["--filename"]->as<std::string>()); // register energy losses as output EnergyLossWriter dEdX{showerAxis, 10_g / square(1_cm), 200}; output.add("energyloss", dEdX); // create a track writer and register it with the output manager TrackWriter tracks; output.add("tracks", tracks); corsika::sibyll::Interaction sibyll; InteractionCounter sibyllCounted(sibyll); corsika::sibyll::NuclearInteraction sibyllNuc(sibyll, env); InteractionCounter sibyllNucCounted(sibyllNuc); auto heModelCounted = make_sequence(sibyllNucCounted, sibyllCounted); corsika::pythia8::Decay decayPythia; // use sibyll decay routine for decays of particles unknown to pythia corsika::sibyll::Decay decaySibyll{{ Code::N1440Plus, Code::N1440MinusBar, Code::N1440_0, Code::N1440_0Bar, Code::N1710Plus, Code::N1710MinusBar, Code::N1710_0, Code::N1710_0Bar, Code::Pi1300Plus, Code::Pi1300Minus, Code::Pi1300_0, Code::KStar0_1430_0, Code::KStar0_1430_0Bar, Code::KStar0_1430_Plus, Code::KStar0_1430_MinusBar, }}; // decaySibyll.printDecayConfig(); HEPEnergyType const emcut = 50_GeV; HEPEnergyType const hadcut = 50_GeV; ParticleCut<SubWriter<decltype(dEdX)>> cut(emcut, emcut, hadcut, hadcut, true, dEdX); corsika::proposal::Interaction emCascade(env); // NOT available for PROPOSAL due to interface trouble: // InteractionCounter emCascadeCounted(emCascade); // corsika::proposal::ContinuousProcess<SubWriter<decltype(dEdX)>> emContinuous(env); BetheBlochPDG<SubWriter<decltype(dEdX)>> emContinuous{dEdX}; LongitudinalWriter profile{showerAxis, 10_g / square(1_cm), 200}; output.add("profile", profile); LongitudinalProfile<SubWriter<decltype(profile)>> longprof{profile}; corsika::urqmd::UrQMD urqmd; InteractionCounter urqmdCounted(urqmd); StackInspector<setup::Stack> stackInspect(10000, false, E0); // assemble all processes into an ordered process list struct EnergySwitch { HEPEnergyType cutE_; EnergySwitch(HEPEnergyType cutE) : cutE_(cutE) {} bool operator()(const Particle& p) const { return (p.getKineticEnergy() < cutE_); } }; auto hadronSequence = make_select(EnergySwitch(63.1_GeV), urqmdCounted, heModelCounted); auto decaySequence = make_sequence(decayPythia, decaySibyll); TrackWriter trackWriter{tracks}; // observation plane Plane const obsPlane(showerCore, DirectionVector(rootCS, {0., 0., 1.})); ObservationPlane<setup::Tracking, ParticleWriterParquet> observationLevel{ obsPlane, DirectionVector(rootCS, {1., 0., 0.})}; // register ground particle output output.add("particles", observationLevel); // assemble the final process sequence auto sequence = make_sequence(stackInspect, hadronSequence, decaySequence, cut, emCascade, emContinuous, // trackWriter, observationLevel, longprof); /* === END: SETUP PROCESS LIST === */ // create the cascade object using the default stack and tracking implementation setup::Tracking tracking; setup::Stack stack; Cascade EAS(env, tracking, sequence, output, stack); // print our primary parameters all in one place if (app["--pdg"]->count() > 0) { CORSIKA_LOG_INFO("Primary PDG ID: {}", app["--pdg"]->as<int>()); } else { CORSIKA_LOG_INFO("Primary Z/A: {}/{}", Z, A); } CORSIKA_LOG_INFO("Primary Energy: {}", E0); CORSIKA_LOG_INFO("Primary Momentum: {}", P0); CORSIKA_LOG_INFO("Point of Injection: {}", injectionPos.getCoordinates()); CORSIKA_LOG_INFO("Shower Axis Length: {}", (showerCore - injectionPos).getNorm() * 1.2); // trigger the output manager to open the library for writing output.startOfLibrary(); // loop over each shower for (int i_shower = 1; i_shower < nevent + 1; i_shower++) { CORSIKA_LOG_INFO("Shower {} / {} ", i_shower, nevent); // directory for outputs string const outdir(app["--filename"]->as<std::string>()); string const labHist_file = outdir + "/inthist_lab_" + to_string(i_shower) + ".npz"; string const cMSHist_file = outdir + "/inthist_cms_" + to_string(i_shower) + ".npz"; // setup particle stack, and add primary particle stack.clear(); // add the desired particle to the stack stack.addParticle(std::make_tuple( beamCode, calculate_kinetic_energy(plab.getNorm(), get_mass(beamCode)), plab.normalized(), injectionPos, 0_ns)); // if we want to fix the first location of the shower if (force_interaction) { CORSIKA_LOG_INFO("Fixing first interaction at injection point."); EAS.forceInteraction(); } // run the shower EAS.run(); HEPEnergyType const Efinal = dEdX.getEnergyLost() + observationLevel.getEnergyGround(); CORSIKA_LOG_INFO( "total energy budget (GeV): {} (dEdX={} ground={}), " "relative difference (%): {}", Efinal / 1_GeV, dEdX.getEnergyLost() / 1_GeV, observationLevel.getEnergyGround() / 1_GeV, (Efinal / E0 - 1) * 100); // auto const hists = heModelCounted.getHistogram() + urqmdCounted.getHistogram(); auto const hists = sibyllCounted.getHistogram() + sibyllNucCounted.getHistogram() + urqmdCounted.getHistogram(); save_hist(hists.labHist(), labHist_file, true); save_hist(hists.CMSHist(), cMSHist_file, true); } // and finalize the output on disk output.endOfLibrary(); }