/* * (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/framework/process/ProcessSequence.hpp> #include <corsika/framework/process/SwitchProcessSequence.hpp> #include <corsika/framework/core/PhysicalUnits.hpp> #include <corsika/framework/process/ProcessTraits.hpp> #include <corsika/framework/process/ContinuousProcessStepLength.hpp> #include <catch2/catch.hpp> #include <array> #include <iomanip> #include <iostream> #include <typeinfo> #include <boost/type_index.hpp> /* Unit test for testing all Process types and their arrangement in containers ProcessSequence and SwitchProcessSequence */ using namespace corsika; using namespace std; static int const nData = 10; // DummyNode is only needed for BoundaryCrossingProcess struct DummyNode { DummyNode(int v) : data_(v) {} int data_ = 0; }; // The stack is non-existent for this example struct DummyStack {}; // our data object (particle) is a simple arrary of doubles struct DummyData { double data_[nData] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; typedef DummyNode node_type; // for BoundaryCrossingProcess }; // there is no real trajectory/track struct DummyTrajectory {}; // since there is no stack, there is also no view. This is a simplistic dummy object // sufficient here. struct DummyView { DummyView(DummyData& p) : p_(p) {} DummyData& p_; DummyData& parent() { return p_; } }; int globalCount = 0; // simple counter int checkDecay = 0; // use this as a bit field int checkInteract = 0; // use this as a bit field int checkSec = 0; // use this as a bit field int checkCont = 0; // use this as a bit field class ContinuousProcess1 : public ContinuousProcess<ContinuousProcess1> { public: ContinuousProcess1(int const v, LengthType const step) : v_(v) , step_(step) { CORSIKA_LOG_DEBUG( "globalCount: {} " ", v_: {} ", globalCount, v_); globalCount++; } void setStep(LengthType const v) { step_ = v; } template <typename D, typename T> ProcessReturn doContinuous(D& d, T&, bool flag) const { flag_ = flag; CORSIKA_LOG_TRACE("ContinuousProcess1::DoContinuous"); checkCont |= 1; for (int i = 0; i < nData; ++i) d.data_[i] += 0.933; return ProcessReturn::Ok; } template <typename TParticle, typename TTrack> LengthType getMaxStepLength(TParticle&, TTrack&) { return step_; } bool getFlag() const { return flag_; } void resetFlag() { flag_ = false; } private: int v_ = 0; LengthType step_ = 0_m; mutable bool flag_ = false; }; class ContinuousProcess2 : public ContinuousProcess<ContinuousProcess2> { public: ContinuousProcess2(int const v, LengthType const step) : v_(v) , step_(step) { CORSIKA_LOG_DEBUG( "globalCount: {}" ", v_: {}", globalCount, v_); globalCount++; } void setStep(LengthType const v) { step_ = v; } template <typename D, typename T> ProcessReturn doContinuous(D& d, T&, bool const flag) const { flag_ = flag; CORSIKA_LOG_DEBUG("ContinuousProcess2::DoContinuous"); checkCont |= 2; for (int i = 0; i < nData; ++i) d.data_[i] += 0.111; return ProcessReturn::Ok; } template <typename TParticle, typename TTrack> LengthType getMaxStepLength(TParticle&, TTrack&) { return step_; } bool getFlag() const { return flag_; } void resetFlag() { flag_ = false; } private: int v_ = 0; LengthType step_ = 0_m; mutable bool flag_ = false; }; class ContinuousProcess3 : public ContinuousProcess<ContinuousProcess3> { public: ContinuousProcess3(int const v, LengthType const step) : v_(v) , step_(step) { CORSIKA_LOG_DEBUG( "globalCount: {}" ", v_: {} ", globalCount, v_); globalCount++; } void setStep(LengthType const v) { step_ = v; } template <typename D, typename T> ProcessReturn doContinuous(D& d, T&, bool const flag) const { flag_ = flag; CORSIKA_LOG_DEBUG("ContinuousProcess3::DoContinuous"); checkCont |= 4; for (int i = 0; i < nData; ++i) d.data_[i] += 0.333; return ProcessReturn::Ok; } template <typename TParticle, typename TTrack> LengthType getMaxStepLength(TParticle&, TTrack&) { return step_; } bool getFlag() const { return flag_; } void resetFlag() { flag_ = false; } private: int v_ = 0; LengthType step_ = 0_m; mutable bool flag_ = false; }; class Process1 : public InteractionProcess<Process1> { public: Process1(int const v) : v_(v) { CORSIKA_LOG_DEBUG( "globalCount: {}" ", v_: {}", globalCount, v_); ; globalCount++; } template <typename TView> void doInteraction(TView& v) const { checkInteract |= 1; for (int i = 0; i < nData; ++i) v.parent().data_[i] += 1 + i; } template <typename TParticle> GrammageType getInteractionLength(TParticle&) const { return 10_g / square(1_cm); } private: int v_; }; class Process2 : public InteractionProcess<Process2> { public: Process2(int const v) : v_(v) { CORSIKA_LOG_DEBUG( "globalCount: {}" ", v_: {}", globalCount, v_); globalCount++; } template <typename TView> void doInteraction(TView& v) const { checkInteract |= 2; for (int i = 0; i < nData; ++i) v.parent().data_[i] /= 1.1; CORSIKA_LOG_DEBUG("Process2::doInteraction"); } template <typename Particle> GrammageType getInteractionLength(Particle&) const { CORSIKA_LOG_DEBUG("Process2::GetInteractionLength"); return 20_g / (1_cm * 1_cm); } private: int v_ = 0; }; class Process3 : public InteractionProcess<Process3> { public: Process3(int const v) : v_(v) { CORSIKA_LOG_DEBUG( "globalCount: {}" ", v_: {}", globalCount, v_); globalCount++; } template <typename TView> void doInteraction(TView& v) const { checkInteract |= 4; for (int i = 0; i < nData; ++i) v.parent().data_[i] *= 1.01; CORSIKA_LOG_DEBUG("Process3::doInteraction"); } template <typename Particle> GrammageType getInteractionLength(Particle&) const { CORSIKA_LOG_DEBUG("Process3::GetInteractionLength"); return 30_g / (1_cm * 1_cm); } private: int v_ = 0; }; class Process4 : public BaseProcess<Process4> { public: Process4(int const v) : v_(v) { CORSIKA_LOG_DEBUG( "globalCount: {}" ", v_: {}", globalCount, v_); globalCount++; } template <typename D, typename T> ProcessReturn doContinuous(D& d, T&, bool const) const { CORSIKA_LOG_DEBUG("Base::doContinuous"); checkCont |= 8; for (int i = 0; i < nData; ++i) { d.data_[i] /= 1.2; } return ProcessReturn::Ok; } template <typename TView> void doInteraction(TView&) const { checkInteract |= 8; } private: int v_ = 0; }; class Decay1 : public DecayProcess<Decay1> { public: Decay1(int const) { CORSIKA_LOG_DEBUG("Decay1()"); globalCount++; } template <typename Particle> TimeType getLifetime(Particle&) const { return 1_s; } template <typename TView> void doDecay(TView&) const { checkDecay |= 1; } }; class Decay2 : public DecayProcess<Decay2> { public: Decay2(int const) { CORSIKA_LOG_DEBUG("Decay2()"); globalCount++; } template <typename Particle> TimeType getLifetime(Particle&) const { return 2_s; } void doDecay(DummyView&) const { checkDecay |= 2; } }; class Stack1 : public StackProcess<Stack1> { public: Stack1(int const n) : StackProcess(n) {} template <typename TStack> void doStack(TStack const&) { count_++; } int getCount() const { return count_; } private: int count_ = 0; }; class Boundary1 : public BoundaryCrossingProcess<Boundary1> { public: Boundary1(double const v = 1.0) : v_(v) {} template <typename Particle> ProcessReturn doBoundaryCrossing(Particle& p, typename Particle::node_type const& from, typename Particle::node_type const& to) { for (int i = 0; i < nData; ++i) { p.data_[i] += v_ * (from.data_ - to.data_); } return ProcessReturn::Ok; } private: double v_ = 0.0; }; TEST_CASE("ProcessSequence General", "ProcessSequence") { logging::set_level(logging::level::info); corsika_logger->set_pattern("[%n:%^%-8l%$]: %v"); SECTION("BaseProcess") { Process1 m1(0); const Process4 m4(3); CHECK(is_process_v<Process1>); CHECK_FALSE(is_process_v<DummyData>); CHECK(is_process_v<decltype(m4)>); CHECK(is_process_v<decltype(Decay1(1))>); CHECK(is_process_v<decltype(ContinuousProcess3{3, 3_m})>); } SECTION("Check construction") { globalCount = 0; Process1 m1(0); CHECK(globalCount == 1); Process2 m2(1); CHECK(globalCount == 2); Process3 m3(2); CHECK(globalCount == 3); Process4 m4(3); CHECK(globalCount == 4); auto sequence1 = make_sequence(m1, m2, m3, m4); CHECK(is_process_v<decltype(sequence1)>); CHECK(is_process_v<decltype(m2)>); CHECK(is_process_sequence_v<decltype(sequence1)>); CHECK_FALSE(is_process_sequence_v<decltype(m2)>); CHECK_FALSE(is_switch_process_sequence_v<decltype(sequence1)>); CHECK_FALSE(is_switch_process_sequence_v<decltype(m2)>); CHECK_FALSE(is_process_sequence_v<decltype(Decay1(7))>); CHECK_FALSE(is_switch_process_sequence_v<decltype(Decay1(7))>); auto sequence2 = make_sequence(m1, m2, m3); CHECK(is_process_sequence_v<decltype(sequence2)> == true); auto sequence3 = make_sequence(m4); CHECK(is_process_sequence_v<decltype(sequence3)> == true); } SECTION("interaction length") { globalCount = 0; ContinuousProcess1 cp1(0, 1_m); Process2 m2(1); Process3 m3(2); DummyData particle; auto sequence2 = make_sequence(cp1, m2, m3); GrammageType const tot = sequence2.getInteractionLength(particle); InverseGrammageType const tot_inv = sequence2.getInverseInteractionLength(particle); CORSIKA_LOG_DEBUG( "lambda_tot={}" "; lambda_tot_inv={}", tot, tot_inv); CHECK(tot / 1_g * square(1_cm) == 12); CHECK(tot_inv * 1_g / square(1_cm) == 1. / 12); globalCount = 0; } SECTION("lifetime") { globalCount = 0; ContinuousProcess1 cp1(0, 1_m); Process2 m2(1); Process3 m3(2); Decay1 d3(3); DummyData particle; auto sequence2 = make_sequence(cp1, m2, m3, d3); TimeType const tot = sequence2.getLifetime(particle); InverseTimeType const tot_inv = sequence2.getInverseLifetime(particle); CORSIKA_LOG_DEBUG( "lambda_tot={}" "; lambda_tot_inv={}", tot, tot_inv); CHECK(tot / 1_s == 1); CHECK(tot_inv * 1_s == 1.); globalCount = 0; } SECTION("ContinousProcess") { globalCount = 0; ContinuousProcess1 cp1(0, 1_m); // += 0.933 ContinuousProcess2 cp2(1, 1.1_m); // += 0.111 Process2 m2(2); // /= 1.1 Process3 m3(3); // *= 1.01 auto sequence2 = make_sequence(cp1, m2, m3, cp2); std::cout << boost::typeindex::type_id<decltype(sequence2)>().pretty_name() << std::endl; DummyData particle; DummyTrajectory track; cp1.resetFlag(); cp2.resetFlag(); ContinuousProcessStepLength const step1 = sequence2.getMaxStepLength(particle, track); CHECK(LengthType(step1) == 1_m); sequence2.doContinuous(particle, track, step1); CHECK(cp1.getFlag()); CHECK_FALSE(cp2.getFlag()); CORSIKA_LOG_INFO("step1, l={}, i={}", LengthType(step1), ContinuousProcessIndex(step1).getIndex()); cp1.resetFlag(); cp2.resetFlag(); cp1.setStep(10_m); ContinuousProcessStepLength const step2 = sequence2.getMaxStepLength(particle, track); CHECK(LengthType(step2) == 1.1_m); CHECK(ContinuousProcessIndex(step1) != ContinuousProcessIndex(step2)); sequence2.doContinuous(particle, track, step2); CHECK_FALSE(cp1.getFlag()); CHECK(cp2.getFlag()); CORSIKA_LOG_INFO("step2, l={}, i={}", LengthType(step2), ContinuousProcessIndex(step2).getIndex()); CORSIKA_LOG_DEBUG("-->init sequence2"); globalCount = 0; CORSIKA_LOG_DEBUG("-->docont"); // validation data double test_data[nData] = {0}; // reset particle = DummyData(); track = DummyTrajectory(); int const nLoop = 5; CORSIKA_LOG_DEBUG("Running loop with n={}", nLoop); for (int iLoop = 0; iLoop < nLoop; ++iLoop) { for (int i = 0; i < nData; ++i) { test_data[i] += 0.933 + 0.111; } sequence2.doContinuous(particle, track, ContinuousProcessIndex(1)); } for (int i = 0; i < nData; i++) { CORSIKA_LOG_DEBUG("data_[{}]={}", i, particle.data_[i]); CHECK(particle.data_[i] == Approx(test_data[i]).margin(1e-9)); } CORSIKA_LOG_DEBUG("done"); } SECTION("StackProcess") { globalCount = 0; Stack1 s1(1); Stack1 s2(2); auto sequence1 = make_sequence(s1, s2); DummyStack stack; int const nLoop = 20; for (int i = 0; i < nLoop; ++i) { sequence1.doStack(stack); } CHECK(s1.getCount() == 20); CHECK(s2.getCount() == 10); ContinuousProcess2 cp2(1, 2_m); // += 0.111 Process2 m2(2); // /= 1.1 auto sequence2 = make_sequence(cp2, m2); auto sequence3 = make_sequence(cp2, m2, s1); CHECK(is_process_sequence_v<decltype(sequence2)> == true); CHECK(is_process_sequence_v<decltype(sequence3)> == true); CHECK(contains_stack_process_v<decltype(sequence2)> == false); CHECK(contains_stack_process_v<decltype(sequence3)> == true); } SECTION("BoundaryCrossingProcess") { globalCount = 0; Boundary1 b1; auto sequence1 = make_sequence(b1); DummyData particle; DummyNode node_from(5); DummyNode node_to(4); int const nLoop = 20; for (int i = 0; i < nLoop; ++i) { sequence1.doBoundaryCrossing(particle, node_from, node_to); } for (int i = 0; i < nData; i++) { CORSIKA_LOG_DEBUG("data_[{}]={}", i, particle.data_[i]); CHECK(particle.data_[i] == Approx(nLoop).margin(1e-9)); } CHECK(is_process_sequence_v<decltype(sequence1)> == true); CHECK(contains_stack_process_v<decltype(sequence1)> == false); CHECK(count_processes<decltype(sequence1)>::count == 1); } } TEST_CASE("SwitchProcessSequence", "ProcessSequence") { logging::set_level(logging::level::info); corsika_logger->set_pattern("[%n:%^%-8l%$]: %v"); /** * In this example switching is done only by "data_[0]>0", where * data in an arrray of doubles, DummyData. */ struct SwitchSelect { SwitchResult operator()(DummyData const& p) const { if (p.data_[0] > 0) return SwitchResult::First; return SwitchResult::Second; } }; SwitchSelect select1; auto cp1 = ContinuousProcess1(0, 1_m); auto cp2 = ContinuousProcess2(0, 2_m); auto cp3 = ContinuousProcess3(0, 3_m); auto sequence1 = make_sequence(Process1(0), cp2, Decay1(0), Boundary1(1.0)); auto sequence2 = make_sequence(cp3, Process2(0), Boundary1(-1.0), Decay2(0)); auto sequence3 = make_sequence(cp1, Process3(0), SwitchProcessSequence(sequence1, sequence2, select1)); auto sequence4 = make_sequence(cp1, Boundary1(2.0), Process3(0), SwitchProcessSequence(sequence1, Boundary1(-1.0), select1)); SECTION("Check construction") { auto sequence_alt = make_sequence( cp1, Process3(0), make_select(make_sequence(Process1(0), cp2, Decay1(0), Boundary1(1.0)), make_sequence(cp3, Process2(0), Boundary1(-1.0), Decay2(0)), select1)); auto switch_seq = SwitchProcessSequence(sequence1, sequence2, select1); CHECK(is_process_sequence_v<decltype(switch_seq)>); CHECK(is_switch_process_sequence_v<decltype(switch_seq)>); // CHECK(is_switch_process_sequence_v<decltype(&switch_seq)>); CHECK(is_switch_process_sequence_v<decltype( SwitchProcessSequence(sequence1, sequence2, select1))>); CHECK(is_process_sequence_v<decltype(sequence3)>); CHECK_FALSE(is_switch_process_sequence_v<decltype(sequence3)>); CHECK(is_process_sequence_v<decltype( SwitchProcessSequence(sequence1, sequence2, select1))>); CHECK(is_switch_process_sequence_v<decltype( SwitchProcessSequence(sequence1, sequence2, select1))>); // check that same process sequence can be build in different ways CHECK(typeid(sequence3) == typeid(sequence_alt)); CHECK(is_process_sequence_v<decltype(sequence3)>); CHECK(is_process_sequence_v<decltype( SwitchProcessSequence(sequence1, sequence2, select1))>); } SECTION("Check interfaces") { DummyData particle; DummyTrajectory track; DummyView view(particle); checkDecay = 0; checkInteract = 0; checkSec = 0; checkCont = 0; particle.data_[0] = 100; // data positive sequence3.doContinuous(particle, track, ContinuousProcessIndex(1)); CHECK(checkInteract == 0); CHECK(checkDecay == 0); CHECK(checkCont == 0b011); CHECK(checkSec == 0); checkDecay = 0; checkInteract = 0; checkSec = 0; checkCont = 0; particle.data_[0] = -100; // data negative sequence3.doContinuous(particle, track, ContinuousProcessIndex(1)); CHECK(checkInteract == 0); CHECK(checkDecay == 0); CHECK(checkCont == 0b101); CHECK(checkSec == 0); // 1/(30g/cm2) is Process3 InverseGrammageType lambda_select = .9 / 30. * square(1_cm) / 1_g; InverseTimeType time_select = 0.1 / second; checkDecay = 0; checkInteract = 0; checkSec = 0; checkCont = 0; particle.data_[0] = 100; // data positive sequence3.selectInteraction(view, lambda_select); sequence3.selectDecay(view, time_select); CHECK(checkInteract == 0b100); // this is Process3 CHECK(checkDecay == 0b001); // this is Decay1 CHECK(checkCont == 0); CHECK(checkSec == 0); lambda_select = 1.01 / 30. * square(1_cm) / 1_g; checkInteract = 0; sequence3.selectInteraction(view, lambda_select); CHECK(checkInteract == 0b001); // this is Process1 checkDecay = 0; checkInteract = 0; checkSec = 0; checkCont = 0; particle.data_[0] = -100; // data negative sequence3.selectInteraction(view, lambda_select); sequence3.selectDecay(view, time_select); CHECK(checkInteract == 0b010); // this is Process2 CHECK(checkDecay == 0b010); // this is Decay2 CHECK(checkCont == 0); CHECK(checkSec == 0); checkDecay = 0; checkInteract = 0; checkSec = 0; checkCont = 0; particle.data_[0] = -100; // data negative sequence3.doSecondaries(view); Stack1 stack(0); sequence3.doStack(stack); CHECK(checkInteract == 0); CHECK(checkDecay == 0); CHECK(checkCont == 0); CHECK(checkSec == 0); // check the SwitchProcessSequence where no process is selected in // selected branch (fallthrough) checkDecay = 0; checkInteract = 0; checkSec = 0; checkCont = 0; particle.data_[0] = -100; // data positive sequence4.selectInteraction(view, lambda_select); sequence4.doSecondaries(view); sequence4.selectDecay(view, time_select); sequence4.doSecondaries(view); CHECK(checkInteract == 0); CHECK(checkDecay == 0); CHECK(checkCont == 0); CHECK(checkSec == 0); // check that large "select" value will correctly ignore the call lambda_select = 1e5 * square(1_cm) / 1_g; time_select = 1e5 / second; checkDecay = 0; checkInteract = 0; sequence3.selectInteraction(view, lambda_select); sequence3.selectDecay(view, time_select); CHECK(checkInteract == 0); CHECK(checkDecay == 0); } SECTION("Check ContinuousProcesses in SwitchProcessSequence") { DummyData particle; DummyTrajectory track; particle.data_[0] = 100; // data positive, selects particular branch on SwitchProcessSequence cp1.setStep(10_m); cp2.setStep(15_m); cp3.setStep(100_m); cp1.resetFlag(); cp2.resetFlag(); cp3.resetFlag(); ContinuousProcessStepLength const step1 = sequence3.getMaxStepLength(particle, track); CHECK(LengthType(step1) == 10_m); sequence3.doContinuous(particle, track, step1); CHECK(cp1.getFlag()); CHECK_FALSE(cp2.getFlag()); CHECK_FALSE(cp3.getFlag()); CORSIKA_LOG_INFO("step1, l={}, i={}", LengthType(step1), ContinuousProcessIndex(step1).getIndex()); particle.data_[0] = 100; // data positive, selects particular branch on SwitchProcessSequence cp1.setStep(50_m); cp2.setStep(15_m); cp3.setStep(100_m); cp1.resetFlag(); cp2.resetFlag(); cp3.resetFlag(); ContinuousProcessStepLength const step2 = sequence3.getMaxStepLength(particle, track); CHECK(LengthType(step2) == 15_m); sequence3.doContinuous(particle, track, step2); CHECK_FALSE(cp1.getFlag()); CHECK(cp2.getFlag()); CHECK_FALSE(cp3.getFlag()); CORSIKA_LOG_INFO("step2, len_cont={}, indexLimit={} type={}", LengthType(step2), ContinuousProcessIndex(step2).getIndex(), boost::typeindex::type_id<decltype(sequence3)>().pretty_name()); particle.data_[0] = -100; // data positive, selects particular branch on SwitchProcessSequence cp1.setStep(11_m); cp2.setStep(15_m); cp3.setStep(100_m); cp1.resetFlag(); cp2.resetFlag(); cp3.resetFlag(); ContinuousProcessStepLength const step3 = sequence3.getMaxStepLength(particle, track); CHECK(LengthType(step3) == 11_m); sequence3.doContinuous(particle, track, step3); CHECK(cp1.getFlag()); CHECK_FALSE(cp2.getFlag()); CHECK_FALSE(cp3.getFlag()); CORSIKA_LOG_INFO("step3, len_cont={}, indexLimit={} type={}", LengthType(step3), ContinuousProcessIndex(step3).getIndex(), boost::typeindex::type_id<decltype(sequence3)>().pretty_name()); particle.data_[0] = -100; // data positive, selects particular branch on SwitchProcessSequence cp1.setStep(11_m); cp2.setStep(15_m); cp3.setStep(2_m); cp1.resetFlag(); cp2.resetFlag(); cp3.resetFlag(); ContinuousProcessStepLength const step4 = sequence3.getMaxStepLength(particle, track); CHECK(LengthType(step4) == 2_m); sequence3.doContinuous(particle, track, step4); CHECK_FALSE(cp1.getFlag()); CHECK_FALSE(cp2.getFlag()); CHECK(cp3.getFlag()); CORSIKA_LOG_INFO("step4, len_cont={}, indexLimit={} type={}", LengthType(step4), ContinuousProcessIndex(step4).getIndex(), boost::typeindex::type_id<decltype(sequence3)>().pretty_name()); } SECTION("Check BoundaryCrossingProcess in SwitchProcessSequence") { DummyData particle; DummyNode node_from(1); DummyNode node_to(2); particle.data_[0] = 100; // data positive, selects particular branch on SwitchProcessSequence sequence4.doBoundaryCrossing(particle, node_from, node_to); CHECK(particle.data_[0] == 97); // 100 - 2*1 - 1*1 particle.data_[0] = -100; // data positive, selects particular branch on SwitchProcessSequence sequence4.doBoundaryCrossing(particle, node_from, node_to); CHECK(particle.data_[0] == -101); // -100 - 2*1 + 1*1 } } TEST_CASE("ProcessSequence Indexing", "ProcessSequence") { logging::set_level(logging::level::info); corsika_logger->set_pattern("[%n:%^%-8l%$]: %v"); SECTION("Indexing") { int const n0 = count_processes<Decay2>::count; int const n1 = count_processes<ContinuousProcess3>::count; int const n2 = count_processes<ContinuousProcess2, count_processes<ContinuousProcess3>::count>::count; int const n1_b = count_processes<Process2, count_processes<ContinuousProcess3>::count>::count; int const n1_c = count_processes<ContinuousProcess3, count_processes<Process2>::count>::count; int const n12 = count_processes<ContinuousProcess2, count_processes<ContinuousProcess3, 10>::count>::count; int const n11_b = count_processes<Process1, count_processes<ContinuousProcess3, 10>::count>::count; int const n11_c = count_processes<ContinuousProcess3, count_processes<Process1, 10>::count>::count; CHECK(n0 == 1); CHECK(n1 == 1); CHECK(n1_b == 2); CHECK(n1_c == 2); CHECK(n2 == 2); CHECK(n11_b == 12); CHECK(n11_c == 12); CHECK(n12 == 12); std::cout << count_processes<ContinuousProcess3>::count << std::endl; std::cout << count_processes<Process3>::count << std::endl; struct SwitchSelect { SwitchResult operator()(DummyData const& p) const { std::cout << "SwitchSelect data=" << p.data_[0] << std::endl; if (p.data_[0] > 0) return SwitchResult::First; return SwitchResult::Second; } }; auto sequence1 = make_sequence(Process1(0), ContinuousProcess2(0, 2_m), Decay1(0)); auto sequence2 = make_sequence(ContinuousProcess3(0, 3_m), Process2(0), Decay2(0), ContinuousProcess1(0, 1_m)); SwitchSelect select1; auto switch_seq = SwitchProcessSequence(sequence1, sequence2, select1); auto sequence3 = make_sequence(ContinuousProcess1(0, 1_m), Process3(0), switch_seq); auto sequence4 = make_sequence(ContinuousProcess1(0, 1_m), Process3(0), SwitchProcessSequence(sequence1, sequence2, select1)); int const switch_seq_n = count_processes<decltype(switch_seq)>::count; int const sequence3_n = count_processes<decltype(sequence3)>::count; CHECK(decltype(sequence1)::getNumberOfProcesses() == 3); CHECK(count_processes<decltype(sequence1)>::count == 3); CHECK(count_processes<decltype(sequence2)>::count == 4); CHECK(switch_seq_n == 7); CHECK(sequence3_n == 9); CHECK(count_processes<decltype(sequence4)>::count == 9); std::cout << "switch_seq " << boost::typeindex::type_id<decltype(switch_seq)>().pretty_name() << std::endl; std::cout << "sequence3 " << boost::typeindex::type_id<decltype(sequence3)>().pretty_name() << std::endl; } }