/* * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ /* clang-format off */ // InteractionCounter used boost/histogram, which // fails if boost/type_traits have been included before. Thus, we have // to include it first... #include <corsika/process/interaction_counter/InteractionCounter.hpp> /* clang-format on */ #include <corsika/cascade/Cascade.h> #include <corsika/environment/Environment.h> #include <corsika/environment/FlatExponential.h> #include <corsika/environment/LayeredSphericalAtmosphereBuilder.h> #include <corsika/environment/NuclearComposition.h> #include <corsika/environment/ShowerAxis.h> #include <corsika/geometry/Plane.h> #include <corsika/geometry/Sphere.h> #include <corsika/logging/Logging.h> #include <corsika/process/ProcessSequence.h> #include <corsika/process/SwitchProcessSequence.h> #include <corsika/process/StackProcess.h> #include <corsika/process/conex_source_cut/CONEXSourceCut.h> #include <corsika/process/energy_loss/EnergyLoss.h> #include <corsika/process/longitudinal_profile/LongitudinalProfile.h> #include <corsika/process/observation_plane/ObservationPlane.h> #include <corsika/process/on_shell_check/OnShellCheck.h> #include <corsika/process/particle_cut/ParticleCut.h> #include <corsika/process/pythia/Decay.h> #include <corsika/process/sibyll/Decay.h> #include <corsika/process/sibyll/Interaction.h> #include <corsika/process/sibyll/NuclearInteraction.h> #include <corsika/process/urqmd/UrQMD.h> #include <corsika/random/RNGManager.h> #include <corsika/setup/SetupStack.h> #include <corsika/setup/SetupTrajectory.h> #include <corsika/units/PhysicalUnits.h> #include <corsika/utl/CorsikaFenv.h> #include <iomanip> #include <iostream> #include <limits> #include <string> using namespace corsika; using namespace corsika::process; using namespace corsika::units; using namespace corsika::particles; using namespace corsika::random; using namespace corsika::geometry; using namespace corsika::environment; using namespace std; using namespace corsika::units::si; void registerRandomStreams(const int seed) { random::RNGManager::GetInstance().RegisterRandomStream("cascade"); random::RNGManager::GetInstance().RegisterRandomStream("qgsjet"); random::RNGManager::GetInstance().RegisterRandomStream("sibyll"); random::RNGManager::GetInstance().RegisterRandomStream("pythia"); random::RNGManager::GetInstance().RegisterRandomStream("urqmd"); random::RNGManager::GetInstance().RegisterRandomStream("proposal"); if (seed == 0) random::RNGManager::GetInstance().SeedAll(); else random::RNGManager::GetInstance().SeedAll(seed); } template <typename T> using MyExtraEnv = environment::MediumPropertyModel<environment::UniformMagneticField<T>>; int main(int argc, char** argv) { logging::SetLevel(logging::level::info); C8LOG_INFO("hybrid_MC"); if (argc < 4) { std::cerr << "usage: hybrid_MC <A> <Z> <energy/GeV> [seed]" << std::endl; std::cerr << " if no seed is given, a random seed is chosen" << std::endl; return 1; } feenableexcept(FE_INVALID); int seed = 0; if (argc > 4) seed = std::stoi(std::string(argv[4])); // initialize random number sequence(s) registerRandomStreams(seed); // setup environment, geometry using EnvType = setup::Environment; EnvType env; const CoordinateSystem& rootCS = env.GetCoordinateSystem(); Point const center{rootCS, 0_m, 0_m, 0_m}; auto builder = environment::make_layered_spherical_atmosphere_builder< setup::EnvironmentInterface, MyExtraEnv>::create(center, units::constants::EarthRadius::Mean, environment::Medium::AirDry1Atm, geometry::Vector{rootCS, 0_T, 50_uT, 0_T}); builder.setNuclearComposition( {{particles::Code::Nitrogen, particles::Code::Oxygen}, {0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km); builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km); builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km); builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km); builder.addLinearLayer(1e9_cm, 112.8_km); builder.assemble(env); // setup particle stack, and add primary particle setup::Stack stack; stack.Clear(); const Code beamCode = Code::Nucleus; unsigned short const A = std::stoi(std::string(argv[1])); unsigned short Z = std::stoi(std::string(argv[2])); auto const mass = particles::GetNucleusMass(A, Z); const HEPEnergyType E0 = 1_GeV * std::stof(std::string(argv[3])); double theta = 0.; auto const thetaRad = theta / 180. * M_PI; auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) { return sqrt((Elab - m) * (Elab + m)); }; HEPMomentumType P0 = elab2plab(E0, mass); auto momentumComponents = [](double thetaRad, HEPMomentumType ptot) { return std::make_tuple(ptot * sin(thetaRad), 0_eV, -ptot * cos(thetaRad)); }; auto const [px, py, pz] = momentumComponents(thetaRad, P0); auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz}); cout << "input particle: " << beamCode << endl; cout << "input angles: theta=" << theta << endl; cout << "input momentum: " << plab.GetComponents() / 1_GeV << ", norm = " << plab.norm() << endl; auto const observationHeight = 0_km + builder.getEarthRadius(); auto const injectionHeight = 112.75_km + builder.getEarthRadius(); auto const t = -observationHeight * cos(thetaRad) + sqrt(-units::static_pow<2>(sin(thetaRad) * observationHeight) + units::static_pow<2>(injectionHeight)); Point const showerCore{rootCS, 0_m, 0_m, observationHeight}; Point const injectionPos = showerCore + Vector<dimensionless_d>{rootCS, {-sin(thetaRad), 0, cos(thetaRad)}} * t; std::cout << "point of injection: " << injectionPos.GetCoordinates() << std::endl; if (A != 1) { stack.AddParticle(std::tuple<particles::Code, units::si::HEPEnergyType, corsika::stack::MomentumVector, geometry::Point, units::si::TimeType, unsigned short, unsigned short>{ beamCode, E0, plab, injectionPos, 0_ns, A, Z}); } else { stack.AddParticle( std::tuple<particles::Code, units::si::HEPEnergyType, corsika::stack::MomentumVector, geometry::Point, units::si::TimeType>{ particles::Code::Proton, E0, plab, injectionPos, 0_ns}); } std::cout << "shower axis length: " << (showerCore - injectionPos).norm() * 1.02 << std::endl; environment::ShowerAxis const showerAxis{injectionPos, (showerCore - injectionPos) * 1.02, env}; // setup processes, decays and interactions process::sibyll::Interaction sibyll; process::interaction_counter::InteractionCounter sibyllCounted(sibyll); process::sibyll::NuclearInteraction sibyllNuc(sibyll, env); process::interaction_counter::InteractionCounter sibyllNucCounted(sibyllNuc); process::pythia::Decay decayPythia; // use sibyll decay routine for decays of particles unknown to pythia process::sibyll::Decay decaySibyll{{ Code::N1440Plus, Code::N1440MinusBar, Code::N1440_0, Code::N1440_0Bar, Code::N1710Plus, Code::N1710MinusBar, Code::N1710_0, Code::N1710_0Bar, Code::Pi1300Plus, Code::Pi1300Minus, Code::Pi1300_0, Code::KStar0_1430_0, Code::KStar0_1430_0Bar, Code::KStar0_1430_Plus, Code::KStar0_1430_MinusBar, }}; decaySibyll.PrintDecayConfig(); process::particle_cut::ParticleCut cut{60_GeV, false, true}; process::energy_loss::EnergyLoss eLoss{showerAxis, cut.GetECut()}; corsika::process::conex_source_cut::CONEXSourceCut conex( center, showerAxis, t, injectionHeight, E0, particles::GetPDG(particles::Code::Proton)); process::on_shell_check::OnShellCheck reset_particle_mass(1.e-3, 1.e-1, false); process::longitudinal_profile::LongitudinalProfile longprof{showerAxis}; Plane const obsPlane(showerCore, Vector<dimensionless_d>(rootCS, {0., 0., 1.})); process::observation_plane::ObservationPlane observationLevel( obsPlane, Vector<dimensionless_d>(rootCS, {1., 0., 0.}), "particles.dat"); process::UrQMD::UrQMD urqmd; process::interaction_counter::InteractionCounter urqmdCounted{urqmd}; // assemble all processes into an ordered process list struct EnergySwitch { HEPEnergyType cutE_; EnergySwitch(HEPEnergyType cutE) : cutE_(cutE) {} process::SwitchResult operator()(const setup::Stack::ParticleType& p) { if (p.GetEnergy() < cutE_) return process::SwitchResult::First; else return process::SwitchResult::Second; } }; auto hadronSequence = process::select(urqmdCounted, process::sequence(sibyllNucCounted, sibyllCounted), EnergySwitch(55_GeV)); auto decaySequence = process::sequence(decayPythia, decaySibyll); auto sequence = process::sequence(hadronSequence, reset_particle_mass, decaySequence, eLoss, cut, conex, longprof, observationLevel); // define air shower object, run simulation setup::Tracking tracking; cascade::Cascade EAS(env, tracking, sequence, stack); // to fix the point of first interaction, uncomment the following two lines: // EAS.SetNodes(); // EAS.forceInteraction(); EAS.Run(); cut.ShowResults(); eLoss.showResults(); observationLevel.ShowResults(); const HEPEnergyType Efinal = cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy() + eLoss.energyLost() + observationLevel.GetEnergyGround(); cout << "total cut energy (GeV): " << Efinal / 1_GeV << endl << "relative difference (%): " << (Efinal / E0 - 1) * 100 << endl; observationLevel.Reset(); cut.Reset(); eLoss.reset(); conex.SolveCE(); auto const hists = sibyllCounted.GetHistogram() + sibyllNucCounted.GetHistogram() + urqmdCounted.GetHistogram(); hists.saveLab("inthist_lab.txt"); hists.saveCMS("inthist_cms.txt"); hists.saveLab("inthist_lab.txt"); hists.saveCMS("inthist_cms.txt"); longprof.save("longprof.txt"); std::ofstream finish("finished"); finish << "run completed without error" << std::endl; }