/* * (c) Copyright 2020 CORSIKA Project, corsika-project@lists.kit.edu * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <catch2/catch.hpp> #include <corsika/modules/radio/ZHS.hpp> #include <corsika/modules/radio/CoREAS.hpp> #include <corsika/modules/radio/antennas/TimeDomainAntenna.hpp> #include <corsika/modules/radio/detectors/RadioDetector.hpp> #include <corsika/modules/radio/propagators/StraightPropagator.hpp> #include <corsika/modules/radio/propagators/SignalPath.hpp> #include <corsika/modules/radio/propagators/RadioPropagator.hpp> #include <vector> #include <xtensor/xtensor.hpp> #include <xtensor/xbuilder.hpp> #include <xtensor/xio.hpp> #include <xtensor/xcsv.hpp> #include <istream> #include <fstream> #include <iostream> #include <corsika/media/Environment.hpp> #include <corsika/media/FlatExponential.hpp> #include <corsika/media/HomogeneousMedium.hpp> #include <corsika/media/IMagneticFieldModel.hpp> #include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp> #include <corsika/media/NuclearComposition.hpp> #include <corsika/media/MediumPropertyModel.hpp> #include <corsika/media/UniformMagneticField.hpp> #include <corsika/media/SlidingPlanarExponential.hpp> #include <corsika/media/Environment.hpp> #include <corsika/media/HomogeneousMedium.hpp> #include <corsika/media/IMediumModel.hpp> #include <corsika/media/IRefractiveIndexModel.hpp> #include <corsika/media/LayeredSphericalAtmosphereBuilder.hpp> #include <corsika/media/UniformRefractiveIndex.hpp> #include <corsika/media/ExponentialRefractiveIndex.hpp> #include <corsika/media/VolumeTreeNode.hpp> #include <corsika/framework/geometry/CoordinateSystem.hpp> #include <corsika/framework/geometry/Line.hpp> #include <corsika/framework/geometry/Point.hpp> #include <corsika/framework/geometry/RootCoordinateSystem.hpp> #include <corsika/framework/geometry/Vector.hpp> #include <corsika/setup/SetupStack.hpp> #include <corsika/setup/SetupEnvironment.hpp> #include <corsika/setup/SetupTrajectory.hpp> #include <corsika/framework/core/PhysicalUnits.hpp> #include <corsika/framework/core/PhysicalConstants.hpp> #include <corsika/media/UniformMagneticField.hpp> using namespace corsika; double constexpr absMargin = 1.0e-7; template <typename TInterface> using MyExtraEnv = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<TInterface>>>; TEST_CASE("Radio", "[processes]") { SECTION("CoREAS process") { // // Environment 1 (works) // // first step is to construct an environment for the propagation (uniform index 1) // using UniRIndex = // UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>; // // using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>; // EnvType envCoREAS; // // // get a coordinate system // const CoordinateSystemPtr rootCSCoREAS = envCoREAS.getCoordinateSystem(); // // auto MediumCoREAS = EnvType::createNode<Sphere>( // Point{rootCSCoREAS, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity()); // // auto const propsCoREAS = MediumCoREAS->setModelProperties<UniRIndex>( // 1.000327, 1_kg / (1_m * 1_m * 1_m), // NuclearComposition( // std::vector<Code>{Code::Nitrogen}, // std::vector<float>{1.f})); // // envCoREAS.getUniverse()->addChild(std::move(MediumCoREAS)); ////////////////////////////////////////////////////////////////////////////////////// // // Environment 2 (works) // using IModelInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>; // using AtmModel = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<HomogeneousMedium // <IModelInterface>>>>; // using EnvType = Environment<AtmModel>; // EnvType envCoREAS; // CoordinateSystemPtr const& rootCSCoREAS = envCoREAS.getCoordinateSystem(); // // get the center point // Point const center{rootCSCoREAS, 0_m, 0_m, 0_m}; // // a refractive index // const double ri_{1.000327}; // // // the constant density // const auto density{19.2_g / cube(1_cm)}; // // // the composition we use for the homogeneous medium // NuclearComposition const protonComposition(std::vector<Code>{Code::Proton}, // std::vector<float>{1.f}); // // // create magnetic field vector // Vector B1(rootCSCoREAS, 0_T, 0_T, 1_T); // // auto Medium = EnvType::createNode<Sphere>( // center, 1_km * std::numeric_limits<double>::infinity()); // // auto const props = Medium->setModelProperties<AtmModel>(ri_, Medium::AirDry1Atm, B1, density, protonComposition); // envCoREAS.getUniverse()->addChild(std::move(Medium)); ////////////////////////////////////////////////////////////////////////////////////// // Environment 3 (works) using EnvironmentInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>; using EnvType = Environment<EnvironmentInterface>; EnvType envCoREAS; CoordinateSystemPtr const& rootCSCoREAS = envCoREAS.getCoordinateSystem(); Point const center{rootCSCoREAS, 0_m, 0_m, 0_m}; auto builder = make_layered_spherical_atmosphere_builder< EnvironmentInterface, MyExtraEnv>::create(center, constants::EarthRadius::Mean, 1.000327, Medium::AirDry1Atm, MagneticFieldVector{rootCSCoREAS, 0_T, 50_uT, 0_T}); builder.setNuclearComposition( {{Code::Nitrogen, Code::Oxygen}, {0.7847f, 1.f - 0.7847f}}); // values taken from AIRES manual, Ar removed for now // builder.addExponentialLayer(1222.6562_g / (1_cm * 1_cm), 994186.38_cm, 4_km); // builder.addExponentialLayer(1144.9069_g / (1_cm * 1_cm), 878153.55_cm, 10_km); // builder.addExponentialLayer(1305.5948_g / (1_cm * 1_cm), 636143.04_cm, 40_km); // builder.addExponentialLayer(540.1778_g / (1_cm * 1_cm), 772170.16_cm, 100_km); builder.addLinearLayer(1e9_cm, 112.8_km); builder.assemble(envCoREAS); ////////////////////////////////////////////////////////////////////////////////////////// // now create antennas and detectors // the antennas location const auto point1{Point(envCoREAS.getCoordinateSystem(), 100_m, 2_m, 3_m)}; const auto point2{Point(envCoREAS.getCoordinateSystem(), 4_m, 80_m, 6_m)}; const auto point3{Point(envCoREAS.getCoordinateSystem(), 7_m, 8_m, 9_m)}; const auto point4{Point(envCoREAS.getCoordinateSystem(), 5_m, 5_m, 10_m)}; // create times for the antenna const TimeType t1{0_s}; // TODO: initialization of times to antennas! particle hits the observation level should be zero const TimeType t2{10_s}; const InverseTimeType t3{1e+3_Hz}; const TimeType t4{11_s}; // check that I can create an antenna at (1, 2, 3) TimeDomainAntenna ant1("antenna_name", point1, t1, t2, t3); TimeDomainAntenna ant2("antenna_name2", point2, t1, t2, t3); // TimeDomainAntenna ant3("antenna1", point1, 0_s, 2_s, 1/1e-7_s); // std::cout << "static cast " << static_cast<int>(1/1000) << std::endl; // construct a radio detector instance to store our antennas AntennaCollection<TimeDomainAntenna> detector; // add the antennas to the detector detector.addAntenna(ant1); detector.addAntenna(ant2); // detector.addAntenna(ant3); // create a particle auto const particle{Code::Electron}; // auto const particle{Code::Gamma}; const auto pmass{get_mass(particle)}; VelocityVector v0(rootCSCoREAS, {5e+2_m / second, 5e+2_m / second, 5e+2_m / second}); Vector B0(rootCSCoREAS, 5_T, 5_T, 5_T); Line const line(point3, v0); auto const k{1_m * ((1_m) / ((1_s * 1_s) * 1_V))}; auto const t = 1_s; LeapFrogTrajectory base(point4, v0, B0, k, t); // create a new stack for each trial setup::Stack stack; // construct an energy const HEPEnergyType E0{1_TeV}; // compute the necessary momentumn const HEPMomentumType P0{sqrt(E0 * E0 - pmass * pmass)}; // and create the momentum vector const auto plab{MomentumVector(rootCSCoREAS, {0_GeV, 0_GeV, P0})}; // and create the location of the particle in this coordinate system const Point pos(rootCSCoREAS, 50_m, 10_m, 80_m); // add the particle to the stack auto const particle1{stack.addParticle(std::make_tuple(particle, E0, plab, pos, 0_ns))}; auto const charge_ {get_charge(particle1.getPID())}; // std::cout << "charge: " << charge_ << std::endl; // std::cout << "1 / c: " << 1. / constants::c << std::endl; // set up a track object // setup::Tracking tracking; // auto startPoint_ {base.getPosition(0)}; // auto midPoint_ {base.getPosition(0.5)}; // auto endPoint_ {base.getPosition(1)}; // std::cout << "startPoint_: " << startPoint_ << std::endl; // std::cout << "midPoint_: " << midPoint_ << std::endl; // std::cout << "endPoint_: " << endPoint_ << std::endl; // auto velo_ {base.getVelocity(0)}; // std::cout << "velocity: " << velo_ << std::endl; // auto startTime_ {particle1.getTime() - base.getDuration()}; // time at the start point of the track hopefully. // auto endTime_ {particle1.getTime()}; // std::cout << "startTime_: " << startTime_ << std::endl; // std::cout << "endTime_: " << endTime_ << std::endl; // // auto beta_ {((endPoint_ - startPoint_) / (constants::c * (endTime_ - startTime_))).normalized()}; // std::cout << "beta_: " << beta_ << std::endl; // Vector<dimensionless_d> v1(rootCSCoREAS, {0, 0, 1}); // std::cout << "v1: " << v1.getComponents() << std::endl; // // std::cout << "beta_.dot(v1): " << beta_.dot(v1) << std::endl; // // std::cout << "Pi: " << 1/M_PI << std::endl; // // std::cout << "speed of light: " << constants::c << std::endl; // // std::cout << "vacuum permitivity: " << constants::epsilonZero << std::endl; // Create a CoREAS instance // CoREAS<decltype(detector), decltype(StraightPropagator(envCoREAS))> coreas1(detector, envCoREAS); // create a radio process instance using CoREAS RadioProcess<decltype(detector), CoREAS<decltype(detector), decltype(StraightPropagator(envCoREAS))>, decltype(StraightPropagator(envCoREAS))> coreas(detector, envCoREAS); // check doContinuous and simulate methods coreas.doContinuous(particle1, base, true); // coreas1.simulate(particle1, base); // check writeOutput method -> should produce 2 csv files for each antenna coreas.writeOutput(); } SECTION("ZHS process") { ////////////////////////////////////////////////////////////////////////////////////// // Environment using IModelInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>; using AtmModel = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<HomogeneousMedium <IModelInterface>>>>; using EnvType = Environment<AtmModel>; EnvType envZHS; CoordinateSystemPtr const& rootCSZHS = envZHS.getCoordinateSystem(); // get the center point Point const center{rootCSZHS, 0_m, 0_m, 0_m}; // a refractive index const double ri_{1.000327}; // the constant density const auto density{19.2_g / cube(1_cm)}; // the composition we use for the homogeneous medium NuclearComposition const protonComposition(std::vector<Code>{Code::Proton}, std::vector<float>{1.f}); // create magnetic field vector Vector B1(rootCSZHS, 0_T, 0_T, 1_T); auto Medium = EnvType::createNode<Sphere>( center, 1_km * std::numeric_limits<double>::infinity()); auto const props = Medium->setModelProperties<AtmModel>(ri_, Medium::AirDry1Atm, B1, density, protonComposition); envZHS.getUniverse()->addChild(std::move(Medium)); // the antennas location const auto point1{Point(envZHS.getCoordinateSystem(), 100_m, 2_m, 3_m)}; const auto point2{Point(envZHS.getCoordinateSystem(), 4_m, 80_m, 6_m)}; const auto point3{Point(envZHS.getCoordinateSystem(), 7_m, 8_m, 9_m)}; const auto point4{Point(envZHS.getCoordinateSystem(), 5_m, 5_m, 10_m)}; // create times for the antenna const TimeType t1{0_s}; const TimeType t2{10_s}; const InverseTimeType t3{1e+3_Hz}; const TimeType t4{11_s}; // check that I can create an antenna at (1, 2, 3) TimeDomainAntenna ant1("antenna_zhs", point1, t1, t2, t3); TimeDomainAntenna ant2("antenna_zhs2", point2, t1, t2, t3); // TimeDomainAntenna ant3("antenna1", point1, 0_s, 2_s, 1/1e-7_s); // construct a radio detector instance to store our antennas AntennaCollection<TimeDomainAntenna> detector; // add the antennas to the detector detector.addAntenna(ant1); detector.addAntenna(ant2); // detector.addAntenna(ant3); // create a particle auto const particle{Code::Electron}; // auto const particle{Code::Gamma}; const auto pmass{get_mass(particle)}; VelocityVector v0(rootCSZHS, {5e+2_m / second, 5e+2_m / second, 5e+2_m / second}); Vector B0(rootCSZHS, 5_T, 5_T, 5_T); Line const line(point3, v0); auto const k{1_m * ((1_m) / ((1_s * 1_s) * 1_V))}; auto const t = 1_s; LeapFrogTrajectory base(point4, v0, B0, k, t); // create a new stack for each trial setup::Stack stack; // construct an energy const HEPEnergyType E0{1_TeV}; // compute the necessary momentumn const HEPMomentumType P0{sqrt(E0 * E0 - pmass * pmass)}; // and create the momentum vector const auto plab{MomentumVector(rootCSZHS, {0_GeV, 0_GeV, P0})}; // and create the location of the particle in this coordinate system const Point pos(rootCSZHS, 50_m, 10_m, 80_m); // add the particle to the stack auto const particle1{stack.addParticle(std::make_tuple(particle, E0, plab, pos, 0_ns))}; auto const charge_ {get_charge(particle1.getPID())}; // create a radio process instance using CoREAS RadioProcess<decltype(detector), ZHS<decltype(detector), decltype(StraightPropagator(envZHS))>, decltype(StraightPropagator(envZHS))> zhs(detector, envZHS); // check doContinuous and simulate methods zhs.doContinuous(particle1, base, true); // zhs.simulate(particle1, base); // check writeOutput method -> should produce 2 csv files for each antenna zhs.writeOutput(); } SECTION("Synchrotron radiation") { // create a suitable environment /////////////////////////////////////////////////// using IModelInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>; using AtmModel = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<HomogeneousMedium <IModelInterface>>>>; using EnvType = Environment<AtmModel>; EnvType env; CoordinateSystemPtr const& rootCS = env.getCoordinateSystem(); // get the center point Point const center{rootCS, 0_m, 0_m, 0_m}; // a refractive index for the vacuum const double ri_{1}; // the constant density const auto density{19.2_g / cube(1_cm)}; // the composition we use for the homogeneous medium NuclearComposition const Composition(std::vector<Code>{Code::Nitrogen}, std::vector<float>{1.f}); // create magnetic field vector Vector B1(rootCS, 0_T, 0_T, 0.3809_T); // create a Sphere for the medium auto Medium = EnvType::createNode<Sphere>( center, 1_km * std::numeric_limits<double>::infinity()); // set the environment properties auto const props = Medium->setModelProperties<AtmModel>(ri_, Medium::AirDry1Atm, B1, density, Composition); // bind things together env.getUniverse()->addChild(std::move(Medium)); // now create antennas and detectors///////////////////////////////////////////// // the antennas location const auto point1{Point(rootCS, 100_m, 100_m, 0_m)}; const auto point2{Point(rootCS, 100_m, -100_m, 0_m)}; const auto point3{Point(rootCS, -100_m, -100_m, 0_m)}; const auto point4{Point(rootCS, -100_m, 100_m, 0_m)}; // create times for the antenna const TimeType t1{0_s}; const TimeType t2{1e-6_s}; const InverseTimeType t3{1e+9_Hz}; // create 4 cool antennas TimeDomainAntenna ant1("cool antenna", point1, t1, t2, t3); TimeDomainAntenna ant2("cooler antenna", point2, t1, t2, t3); TimeDomainAntenna ant3("coolest antenna", point3, t1, t2, t3); TimeDomainAntenna ant4("No, I am the coolest antenna", point4, t1, t2, t3); // construct a radio detector instance to store our antennas AntennaCollection<TimeDomainAntenna> detector; // add the antennas to the detector detector.addAntenna(ant1); detector.addAntenna(ant2); detector.addAntenna(ant3); detector.addAntenna(ant4); // create points that make a 2D circle of radius=100m //////////////////////////////// Point p0(rootCS, {0_m, 100_m, 0_m}); Point p1(rootCS, {1_m, 99.995_m, 0_m}); Point p2(rootCS, {2_m,99.98_m, 0_m}); Point p3(rootCS, {3_m,99.955_m, 0_m}); Point p4(rootCS, {4_m,99.92_m, 0_m}); Point p5(rootCS, {5_m,99.875_m, 0_m}); Point p6(rootCS, {6_m,99.82_m, 0_m}); Point p7(rootCS, {7_m,99.755_m, 0_m}); Point p8(rootCS, {8_m,99.679_m, 0_m}); Point p9(rootCS, {9_m,99.594_m, 0_m}); Point p10(rootCS,{10_m,99.499_m, 0_m}); Point p11(rootCS,{11_m,99.393_m, 0_m}); Point p12(rootCS,{12_m,99.277_m, 0_m}); Point p13(rootCS,{13_m,99.151_m, 0_m}); Point p14(rootCS,{14_m,99.015_m, 0_m}); Point p15(rootCS,{15_m,98.869_m, 0_m}); Point p16(rootCS,{16_m,98.712_m, 0_m}); Point p17(rootCS,{17_m,98.544_m, 0_m}); Point p18(rootCS,{18_m,98.367_m, 0_m}); Point p19(rootCS,{19_m,98.178_m, 0_m}); Point p20(rootCS,{20_m,97.98_m, 0_m}); Point p21(rootCS,{21_m,97.77_m, 0_m}); Point p22(rootCS,{22_m,97.55_m, 0_m}); Point p23(rootCS,{23_m,97.319_m, 0_m}); Point p24(rootCS,{24_m,97.077_m, 0_m}); Point p25(rootCS,{25_m,96.825_m, 0_m}); Point p26(rootCS,{26_m,96.561_m, 0_m}); Point p27(rootCS,{27_m,96.286_m, 0_m}); Point p28(rootCS,{28_m,96_m, 0_m}); Point p29(rootCS,{29_m,95.703_m, 0_m}); Point p30(rootCS,{30_m,95.394_m, 0_m}); Point p31(rootCS,{31_m,95.074_m, 0_m}); Point p32(rootCS,{32_m,94.742_m, 0_m}); Point p33(rootCS,{33_m,94.398_m, 0_m}); Point p34(rootCS,{34_m,94.043_m, 0_m}); Point p35(rootCS,{35_m,93.675_m, 0_m}); Point p36(rootCS,{36_m,93.295_m, 0_m}); Point p37(rootCS,{37_m,92.903_m, 0_m}); Point p38(rootCS,{38_m,92.499_m, 0_m}); Point p39(rootCS,{39_m,92.081_m, 0_m}); Point p40(rootCS,{40_m,91.652_m, 0_m}); Point p41(rootCS,{41_m,91.209_m, 0_m}); Point p42(rootCS,{42_m,90.752_m, 0_m}); Point p43(rootCS,{43_m,90.283_m, 0_m}); Point p44(rootCS,{44_m,89.8_m, 0_m}); Point p45(rootCS,{45_m,89.303_m, 0_m}); Point p46(rootCS,{46_m,88.792_m, 0_m}); Point p47(rootCS,{47_m,88.267_m, 0_m}); Point p48(rootCS,{48_m,87.727_m, 0_m}); Point p49(rootCS,{49_m,87.171_m, 0_m}); Point p50(rootCS,{50_m,86.603_m, 0_m}); Point p51(rootCS,{51_m,86.017_m, 0_m}); Point p52(rootCS,{52_m,85.417_m, 0_m}); Point p53(rootCS,{53_m,84.8_m, 0_m}); Point p54(rootCS,{54_m,84.167_m, 0_m}); Point p55(rootCS,{55_m,83.516_m, 0_m}); Point p56(rootCS,{56_m,82.849_m, 0_m}); Point p57(rootCS,{57_m,82.164_m, 0_m}); Point p58(rootCS,{58_m,81.462_m, 0_m}); Point p59(rootCS,{59_m,80.74_m, 0_m}); Point p60(rootCS,{60_m,80_m, 0_m}); Point p61(rootCS,{61_m,79.24_m, 0_m}); Point p62(rootCS,{62_m,78.46_m, 0_m}); Point p63(rootCS,{63_m,77.66_m, 0_m}); Point p64(rootCS,{64_m,76.837_m, 0_m}); Point p65(rootCS,{65_m,75.993_m, 0_m}); Point p66(rootCS,{66_m,75.127_m, 0_m}); Point p67(rootCS,{67_m,74.236_m, 0_m}); Point p68(rootCS,{68_m,73.321_m, 0_m}); Point p69(rootCS,{69_m,72.476_m, 0_m}); Point p70(rootCS,{70_m,71.414_m, 0_m}); Point p71(rootCS,{71_m,70.42_m, 0_m}); Point p72(rootCS,{72_m,69.397_m, 0_m}); Point p73(rootCS,{73_m,68.345_m, 0_m}); Point p74(rootCS,{74_m,67.261_m, 0_m}); Point p75(rootCS,{75_m,66.144_m, 0_m}); Point p76(rootCS,{76_m,64.992_m, 0_m}); Point p77(rootCS,{77_m,63.804_m, 0_m}); Point p78(rootCS,{78_m,62.578_m, 0_m}); Point p79(rootCS,{79_m,61.311_m, 0_m}); Point p80(rootCS,{80_m,60_m, 0_m}); Point p81(rootCS,{81_m,58.643_m, 0_m}); Point p82(rootCS,{82_m,57.236_m, 0_m}); Point p83(rootCS,{83_m,55.776_m, 0_m}); Point p84(rootCS,{84_m,54.259_m, 0_m}); Point p85(rootCS,{85_m,52.678_m, 0_m}); Point p86(rootCS,{86_m,51.029_m, 0_m}); Point p87(rootCS,{87_m,49.305_m, 0_m}); Point p88(rootCS,{88_m,47.497_m, 0_m}); Point p89(rootCS,{89_m,45.596_m, 0_m}); Point p90(rootCS,{90_m,43.589_m, 0_m}); Point p91(rootCS,{91_m,41.461_m, 0_m}); Point p92(rootCS,{92_m,39.192_m, 0_m}); Point p93(rootCS,{93_m,36.756_m, 0_m}); Point p94(rootCS,{94_m,34.117_m, 0_m}); Point p95(rootCS,{95_m,31.225_m, 0_m}); Point p96(rootCS,{96_m,28_m, 0_m}); Point p97(rootCS,{97_m,24.31_m, 0_m}); Point p98(rootCS,{98_m,19.9_m, 0_m}); Point p99(rootCS,{99_m,14.107_m, 0_m}); Point p100(rootCS,{100_m,0_m, 0_m}); Point p101(rootCS,{99_m,-14.107_m, 0_m}); Point p102(rootCS,{98_m,-19.9_m, 0_m}); Point p103(rootCS,{97_m,-24.31_m, 0_m}); Point p104(rootCS,{96_m,-28_m, 0_m}); Point p105(rootCS,{95_m,-31.225_m, 0_m}); Point p106(rootCS,{94_m,-34.117_m, 0_m}); Point p107(rootCS,{93_m,-36.756_m, 0_m}); Point p108(rootCS,{92_m,-39.192_m, 0_m}); Point p109(rootCS,{91_m,-41.461_m, 0_m}); Point p110(rootCS,{90_m,-43.589_m, 0_m}); Point p111(rootCS,{89_m,-45.596_m, 0_m}); Point p112(rootCS,{88_m,-47.497_m, 0_m}); Point p113(rootCS,{87_m,-49.305_m, 0_m}); Point p114(rootCS,{86_m,-51.029_m, 0_m}); Point p115(rootCS,{85_m,-52.678_m, 0_m}); Point p116(rootCS,{84_m,-54.259_m, 0_m}); Point p117(rootCS,{83_m,-55.776_m, 0_m}); Point p118(rootCS,{82_m,-57.236_m, 0_m}); Point p119(rootCS,{81_m,-58.643_m, 0_m}); Point p120(rootCS,{80_m,-60_m, 0_m}); Point p121(rootCS,{79_m,-61.311_m, 0_m}); Point p122(rootCS,{78_m,-62.578_m, 0_m}); Point p123(rootCS,{77_m,-63.804_m, 0_m}); Point p124(rootCS,{76_m,-64.992_m, 0_m}); Point p125(rootCS,{75_m,-66.144_m, 0_m}); Point p126(rootCS,{74_m,-67.261_m, 0_m}); Point p127(rootCS,{73_m,-68.345_m, 0_m}); Point p128(rootCS,{72_m,-69.397_m, 0_m}); Point p129(rootCS,{71_m,-70.42_m, 0_m}); Point p130(rootCS,{70_m,-71.414_m, 0_m}); Point p131(rootCS,{69_m,-72.476_m, 0_m}); Point p132(rootCS,{68_m,-73.321_m, 0_m}); Point p133(rootCS,{67_m,-74.236_m, 0_m}); Point p134(rootCS,{66_m,-75.127_m, 0_m}); Point p135(rootCS,{65_m,-75.993_m, 0_m}); Point p136(rootCS,{64_m,-76.837_m, 0_m}); Point p137(rootCS,{63_m,-77.66_m, 0_m}); Point p138(rootCS,{62_m,-78.46_m, 0_m}); Point p139(rootCS,{61_m,-79.24_m, 0_m}); Point p140(rootCS,{60_m,-80_m, 0_m}); Point p141(rootCS,{59_m,-80.74_m, 0_m}); Point p142(rootCS,{58_m,-81.462_m, 0_m}); Point p143(rootCS,{57_m,-82.164_m, 0_m}); Point p144(rootCS,{56_m,-82.849_m, 0_m}); Point p145(rootCS,{55_m,-83.516_m, 0_m}); Point p146(rootCS,{54_m,-84.167_m, 0_m}); Point p147(rootCS,{53_m,-84.8_m, 0_m}); Point p148(rootCS,{52_m,-85.417_m, 0_m}); Point p149(rootCS,{51_m,-86.017_m, 0_m}); Point p150(rootCS,{50_m,-86.603_m, 0_m}); Point p151(rootCS,{49_m,-87.171_m, 0_m}); Point p152(rootCS,{48_m,-87.727_m, 0_m}); Point p153(rootCS,{47_m,-88.267_m, 0_m}); Point p154(rootCS,{46_m,-88.792_m, 0_m}); Point p155(rootCS,{45_m,-89.303_m, 0_m}); Point p156(rootCS,{44_m,-89.8_m, 0_m}); Point p157(rootCS,{43_m,-90.283_m, 0_m}); Point p158(rootCS,{42_m,-90.752_m, 0_m}); Point p159(rootCS,{41_m,-91.209_m, 0_m}); Point p160(rootCS,{40_m,-91.652_m, 0_m}); Point p161(rootCS,{39_m,-92.081_m, 0_m}); Point p162(rootCS,{38_m,-92.499_m, 0_m}); Point p163(rootCS,{37_m,-92.903_m, 0_m}); Point p164(rootCS,{36_m,-93.295_m, 0_m}); Point p165(rootCS,{35_m,-93.675_m, 0_m}); Point p166(rootCS,{34_m,-94.043_m, 0_m}); Point p167(rootCS,{33_m,-94.398_m, 0_m}); Point p168(rootCS,{32_m,-94.742_m, 0_m}); Point p169(rootCS,{31_m,-95.074_m, 0_m}); Point p170(rootCS,{30_m,-95.394_m, 0_m}); Point p171(rootCS,{29_m,-95.703_m, 0_m}); Point p172(rootCS,{28_m,-96_m, 0_m}); Point p173(rootCS,{27_m,-96.286_m, 0_m}); Point p174(rootCS,{26_m,-96.561_m, 0_m}); Point p175(rootCS,{25_m,-96.825_m, 0_m}); Point p176(rootCS,{24_m,-97.077_m, 0_m}); Point p177(rootCS,{23_m,-97.319_m, 0_m}); Point p178(rootCS,{22_m,-97.55_m, 0_m}); Point p179(rootCS,{21_m,-97.77_m, 0_m}); Point p180(rootCS,{20_m,-97.98_m, 0_m}); Point p181(rootCS,{19_m,-98.178_m, 0_m}); Point p182(rootCS,{18_m,-98.367_m, 0_m}); Point p183(rootCS,{17_m,-98.544_m, 0_m}); Point p184(rootCS,{16_m,-98.712_m, 0_m}); Point p185(rootCS,{15_m,-98.869_m, 0_m}); Point p186(rootCS,{14_m,-99.015_m, 0_m}); Point p187(rootCS,{13_m,-99.151_m, 0_m}); Point p188(rootCS,{12_m,-99.277_m, 0_m}); Point p189(rootCS,{11_m,-99.393_m, 0_m}); Point p190(rootCS,{10_m,-99.499_m, 0_m}); Point p191(rootCS,{9_m,-99.594_m, 0_m}); Point p192(rootCS,{8_m,-99.679_m, 0_m}); Point p193(rootCS,{7_m,-99.755_m, 0_m}); Point p194(rootCS,{6_m,-99.82_m, 0_m}); Point p195(rootCS,{5_m,-99.875_m, 0_m}); Point p196(rootCS,{4_m,-99.92_m, 0_m}); Point p197(rootCS,{3_m,-99.955_m, 0_m}); Point p198(rootCS,{2_m,-99.98_m, 0_m}); Point p199(rootCS,{1_m,-99.995_m, 0_m}); Point p200(rootCS,{0_m,-100_m, 0_m}); Point p201(rootCS,{-1_m,-99.995_m, 0_m}); Point p202(rootCS,{-2_m,-99.98_m, 0_m}); Point p203(rootCS,{-3_m,-99.955_m, 0_m}); Point p204(rootCS,{-4_m,-99.92_m, 0_m}); Point p205(rootCS,{-5_m,-99.875_m, 0_m}); Point p206(rootCS,{-6_m,-99.82_m, 0_m}); Point p207(rootCS,{-7_m,-99.755_m, 0_m}); Point p208(rootCS,{-8_m,-99.679_m, 0_m}); Point p209(rootCS,{-9_m,-99.594_m, 0_m}); Point p210(rootCS,{-10_m,-99.499_m, 0_m}); Point p211(rootCS,{-11_m,-99.393_m, 0_m}); Point p212(rootCS,{-12_m,-99.277_m, 0_m}); Point p213(rootCS,{-13_m,-99.151_m, 0_m}); Point p214(rootCS,{-14_m,-99.015_m, 0_m}); Point p215(rootCS,{-15_m,-98.869_m, 0_m}); Point p216(rootCS,{-16_m,-98.712_m, 0_m}); Point p217(rootCS,{-17_m,-98.544_m, 0_m}); Point p218(rootCS,{-18_m,-98.367_m, 0_m}); Point p219(rootCS,{-19_m,-98.178_m, 0_m}); Point p220(rootCS,{-20_m,-97.98_m, 0_m}); Point p221(rootCS,{-21_m,-97.77_m, 0_m}); Point p222(rootCS,{-22_m,-97.55_m, 0_m}); Point p223(rootCS,{-23_m,-97.319_m, 0_m}); Point p224(rootCS,{-24_m,-97.077_m, 0_m}); Point p225(rootCS,{-25_m,-96.825_m, 0_m}); Point p226(rootCS,{-26_m,-96.561_m, 0_m}); Point p227(rootCS,{-27_m,-96.286_m, 0_m}); Point p228(rootCS,{-28_m,-96_m, 0_m}); Point p229(rootCS,{-29_m,-95.703_m, 0_m}); Point p230(rootCS,{-30_m,-95.394_m, 0_m}); Point p231(rootCS,{-31_m,-95.074_m, 0_m}); Point p232(rootCS,{-32_m,-94.742_m, 0_m}); Point p233(rootCS,{-33_m,-94.398_m, 0_m}); Point p234(rootCS,{-34_m,-94.043_m, 0_m}); Point p235(rootCS,{-35_m,-93.675_m, 0_m}); Point p236(rootCS,{-36_m,-93.295_m, 0_m}); Point p237(rootCS,{-37_m,-92.903_m, 0_m}); Point p238(rootCS,{-38_m,-92.499_m, 0_m}); Point p239(rootCS,{-39_m,-92.081_m, 0_m}); Point p240(rootCS,{-40_m,-91.652_m, 0_m}); Point p241(rootCS,{-41_m,-91.209_m, 0_m}); Point p242(rootCS,{-42_m,-90.752_m, 0_m}); Point p243(rootCS,{-43_m,-90.283_m, 0_m}); Point p244(rootCS,{-44_m,-89.8_m, 0_m}); Point p245(rootCS,{-45_m,-89.303_m, 0_m}); Point p246(rootCS,{-46_m,-88.792_m, 0_m}); Point p247(rootCS,{-47_m,-88.267_m, 0_m}); Point p248(rootCS,{-48_m,-87.727_m, 0_m}); Point p249(rootCS,{-49_m,-87.171_m, 0_m}); Point p250(rootCS,{-50_m,-86.603_m, 0_m}); Point p251(rootCS,{-51_m,-86.017_m, 0_m}); Point p252(rootCS,{-52_m,-85.417_m, 0_m}); Point p253(rootCS,{-53_m,-84.8_m, 0_m}); Point p254(rootCS,{-54_m,-84.167_m, 0_m}); Point p255(rootCS,{-55_m,-83.516_m, 0_m}); Point p256(rootCS,{-56_m,-82.849_m, 0_m}); Point p257(rootCS,{-57_m,-82.164_m, 0_m}); Point p258(rootCS,{-58_m,-81.462_m, 0_m}); Point p259(rootCS,{-59_m,-80.74_m, 0_m}); Point p260(rootCS,{-60_m,-80_m, 0_m}); Point p261(rootCS,{-61_m,-79.24_m, 0_m}); Point p262(rootCS,{-62_m,-78.46_m, 0_m}); Point p263(rootCS,{-63_m,-77.66_m, 0_m}); Point p264(rootCS,{-64_m,-76.837_m, 0_m}); Point p265(rootCS,{-65_m,-75.993_m, 0_m}); Point p266(rootCS,{-66_m,-75.127_m, 0_m}); Point p267(rootCS,{-67_m,-74.236_m, 0_m}); Point p268(rootCS,{-68_m,-73.321_m, 0_m}); Point p269(rootCS,{-69_m,-72.476_m, 0_m}); Point p270(rootCS,{-70_m,-71.414_m, 0_m}); Point p271(rootCS,{-71_m,-70.42_m, 0_m}); Point p272(rootCS,{-72_m,-69.397_m, 0_m}); Point p273(rootCS,{-73_m,-68.345_m, 0_m}); Point p274(rootCS,{-74_m,-67.261_m, 0_m}); Point p275(rootCS,{-75_m,-66.144_m, 0_m}); Point p276(rootCS,{-76_m,-64.992_m, 0_m}); Point p277(rootCS,{-77_m,-63.804_m, 0_m}); Point p278(rootCS,{-78_m,-62.578_m, 0_m}); Point p279(rootCS,{-79_m,-61.311_m, 0_m}); Point p280(rootCS,{-80_m,-60_m, 0_m}); Point p281(rootCS,{-81_m,-58.643_m, 0_m}); Point p282(rootCS,{-82_m,-57.236_m, 0_m}); Point p283(rootCS,{-83_m,-55.776_m, 0_m}); Point p284(rootCS,{-84_m,-54.259_m, 0_m}); Point p285(rootCS,{-85_m,-52.678_m, 0_m}); Point p286(rootCS,{-86_m,-51.029_m, 0_m}); Point p287(rootCS,{-87_m,-49.305_m, 0_m}); Point p288(rootCS,{-88_m,-47.497_m, 0_m}); Point p289(rootCS,{-89_m,-45.596_m, 0_m}); Point p290(rootCS,{-90_m,-43.589_m, 0_m}); Point p291(rootCS,{-91_m,-41.461_m, 0_m}); Point p292(rootCS,{-92_m,-39.192_m, 0_m}); Point p293(rootCS,{-93_m,-36.756_m, 0_m}); Point p294(rootCS,{-94_m,-34.117_m, 0_m}); Point p295(rootCS,{-95_m,-31.225_m, 0_m}); Point p296(rootCS,{-96_m,-28_m, 0_m}); Point p297(rootCS,{-97_m,-24.31_m, 0_m}); Point p298(rootCS,{-98_m,-19.9_m, 0_m}); Point p299(rootCS,{-99_m,-14.107_m, 0_m}); Point p300(rootCS,{-100_m,0_m, 0_m}); Point p301(rootCS,{-99_m,14.107_m, 0_m}); Point p302(rootCS,{-98_m,19.9_m, 0_m}); Point p303(rootCS,{-97_m,24.31_m, 0_m}); Point p304(rootCS,{-96_m,28_m, 0_m}); Point p305(rootCS,{-95_m,31.225_m, 0_m}); Point p306(rootCS,{-94_m,34.117_m, 0_m}); Point p307(rootCS,{-93_m,36.756_m, 0_m}); Point p308(rootCS,{-92_m,39.192_m, 0_m}); Point p309(rootCS,{-91_m,41.461_m, 0_m}); Point p310(rootCS,{-90_m,43.589_m, 0_m}); Point p311(rootCS,{-89_m,45.596_m, 0_m}); Point p312(rootCS,{-88_m,47.497_m, 0_m}); Point p313(rootCS,{-87_m,49.305_m, 0_m}); Point p314(rootCS,{-86_m,51.029_m, 0_m}); Point p315(rootCS,{-85_m,52.678_m, 0_m}); Point p316(rootCS,{-84_m,54.259_m, 0_m}); Point p317(rootCS,{-83_m,55.776_m, 0_m}); Point p318(rootCS,{-82_m,57.236_m, 0_m}); Point p319(rootCS,{-81_m,58.643_m, 0_m}); Point p320(rootCS,{-80_m,60_m, 0_m}); Point p321(rootCS,{-79_m,61.311_m, 0_m}); Point p322(rootCS,{-78_m,62.578_m, 0_m}); Point p323(rootCS,{-77_m,63.804_m, 0_m}); Point p324(rootCS,{-76_m,64.992_m, 0_m}); Point p325(rootCS,{-75_m,66.144_m, 0_m}); Point p326(rootCS,{-74_m,67.261_m, 0_m}); Point p327(rootCS,{-73_m,68.345_m, 0_m}); Point p328(rootCS,{-72_m,69.397_m, 0_m}); Point p329(rootCS,{-71_m,70.42_m, 0_m}); Point p330(rootCS,{-70_m,71.414_m, 0_m}); Point p331(rootCS,{-69_m,72.476_m, 0_m}); Point p332(rootCS,{-68_m,73.321_m, 0_m}); Point p333(rootCS,{-67_m,74.236_m, 0_m}); Point p334(rootCS,{-66_m,75.127_m, 0_m}); Point p335(rootCS,{-65_m,75.993_m, 0_m}); Point p336(rootCS,{-64_m,76.837_m, 0_m}); Point p337(rootCS,{-63_m,77.66_m, 0_m}); Point p338(rootCS,{-62_m,78.46_m, 0_m}); Point p339(rootCS,{-61_m,79.24_m, 0_m}); Point p340(rootCS,{-60_m,80_m, 0_m}); Point p341(rootCS,{-59_m,80.74_m, 0_m}); Point p342(rootCS,{-58_m,81.462_m, 0_m}); Point p343(rootCS,{-57_m,82.164_m, 0_m}); Point p344(rootCS,{-56_m,82.849_m, 0_m}); Point p345(rootCS,{-55_m,83.516_m, 0_m}); Point p346(rootCS,{-54_m,84.167_m, 0_m}); Point p347(rootCS,{-53_m,84.8_m, 0_m}); Point p348(rootCS,{-52_m,85.417_m, 0_m}); Point p349(rootCS,{-51_m,86.017_m, 0_m}); Point p350(rootCS,{-50_m,86.603_m, 0_m}); Point p351(rootCS,{-49_m,87.171_m, 0_m}); Point p352(rootCS,{-48_m,87.727_m, 0_m}); Point p353(rootCS,{-47_m,88.267_m, 0_m}); Point p354(rootCS,{-46_m,88.792_m, 0_m}); Point p355(rootCS,{-45_m,89.303_m, 0_m}); Point p356(rootCS,{-44_m,89.8_m, 0_m}); Point p357(rootCS,{-43_m,90.283_m, 0_m}); Point p358(rootCS,{-42_m,90.752_m, 0_m}); Point p359(rootCS,{-41_m,91.209_m, 0_m}); Point p360(rootCS,{-40_m,91.652_m, 0_m}); Point p361(rootCS,{-39_m,92.081_m, 0_m}); Point p362(rootCS,{-38_m,92.499_m, 0_m}); Point p363(rootCS,{-37_m,92.903_m, 0_m}); Point p364(rootCS,{-36_m,93.295_m, 0_m}); Point p365(rootCS,{-35_m,93.675_m, 0_m}); Point p366(rootCS,{-34_m,94.043_m, 0_m}); Point p367(rootCS,{-33_m,94.398_m, 0_m}); Point p368(rootCS,{-32_m,94.742_m, 0_m}); Point p369(rootCS,{-31_m,95.074_m, 0_m}); Point p370(rootCS,{-30_m,95.394_m, 0_m}); Point p371(rootCS,{-29_m,95.703_m, 0_m}); Point p372(rootCS,{-28_m,96_m, 0_m}); Point p373(rootCS,{-27_m,96.286_m, 0_m}); Point p374(rootCS,{-26_m,96.561_m, 0_m}); Point p375(rootCS,{-25_m,96.825_m, 0_m}); Point p376(rootCS,{-24_m,97.077_m, 0_m}); Point p377(rootCS,{-23_m,97.319_m, 0_m}); Point p378(rootCS,{-22_m,97.55_m, 0_m}); Point p379(rootCS,{-21_m,97.77_m, 0_m}); Point p380(rootCS,{-20_m,97.98_m, 0_m}); Point p381(rootCS,{-19_m,98.178_m, 0_m}); Point p382(rootCS,{-18_m,98.367_m, 0_m}); Point p383(rootCS,{-17_m,98.544_m, 0_m}); Point p384(rootCS,{-16_m,98.712_m, 0_m}); Point p385(rootCS,{-15_m,98.869_m, 0_m}); Point p386(rootCS,{-14_m,99.015_m, 0_m}); Point p387(rootCS,{-13_m,99.151_m, 0_m}); Point p388(rootCS,{-12_m,99.277_m, 0_m}); Point p389(rootCS,{-11_m,99.393_m, 0_m}); Point p390(rootCS,{-10_m,99.499_m, 0_m}); Point p391(rootCS,{-9_m,99.594_m, 0_m}); Point p392(rootCS,{-8_m,99.679_m, 0_m}); Point p393(rootCS,{-7_m,99.755_m, 0_m}); Point p394(rootCS,{-6_m,99.82_m, 0_m}); Point p395(rootCS,{-5_m,99.875_m, 0_m}); Point p396(rootCS,{-4_m,99.92_m, 0_m}); Point p397(rootCS,{-3_m,99.955_m, 0_m}); Point p398(rootCS,{-2_m,99.98_m, 0_m}); Point p399(rootCS,{-1_m,99.995_m, 0_m}); // Point p400(rootCS,{0_m,100_m, 0_m}); // same as p0 // store all the points in a std::array std::array<Point, 400> points_ {p0,p1,p2,p3,p4,p5,p6,p7,p8,p9, p10,p11,p12,p13,p14,p15,p16,p17,p18,p19, p20,p21,p22,p23,p24,p25,p26,p27,p28,p29, p30,p31,p32,p33,p34,p35,p36,p37,p38,p39, p40,p41,p42,p43,p44,p45,p46,p47,p48,p49, p50,p51,p52,p53,p54,p55,p56,p57,p58,p59, p60,p61,p62,p63,p64,p65,p66,p67,p68,p69, p70,p71,p72,p73,p74,p75,p76,p77,p78,p79, p80,p81,p82,p83,p84,p85,p86,p87,p88,p89, p90,p91,p92,p93,p94,p95,p96,p97,p98,p99, p100,p101,p102,p103,p104,p105,p106,p107,p108,p109, p110,p111,p112,p113,p114,p115,p116,p117,p118,p119, p120,p121,p122,p123,p124,p125,p126,p127,p128,p129, p130,p131,p132,p133,p134,p135,p136,p137,p138,p139, p140,p141,p142,p143,p144,p145,p146,p147,p148,p149, p150,p151,p152,p153,p154,p155,p156,p157,p158,p159, p160,p161,p162,p163,p164,p165,p166,p167,p168,p169, p170,p171,p172,p173,p174,p175,p176,p177,p178,p179, p180,p181,p182,p183,p184,p185,p186,p187,p188,p189, p190,p191,p192,p193,p194,p195,p196,p197,p198,p199, p200,p201,p202,p203,p204,p205,p206,p207,p208,p209, p210,p211,p212,p213,p214,p215,p216,p217,p218,p219, p220,p221,p222,p223,p224,p225,p226,p227,p228,p229, p230,p231,p232,p233,p234,p235,p236,p237,p238,p239, p240,p241,p242,p243,p244,p245,p246,p247,p248,p249, p250,p251,p252,p253,p254,p255,p256,p257,p258,p259, p260,p261,p262,p263,p264,p265,p266,p267,p268,p269, p270,p271,p272,p273,p274,p275,p276,p277,p278,p279, p280,p281,p282,p283,p284,p285,p286,p287,p288,p289, p290,p291,p292,p293,p294,p295,p296,p297,p298,p299, p300,p301,p302,p303,p304,p305,p306,p307,p308,p309, p310,p311,p312,p313,p314,p315,p316,p317,p318,p319, p320,p321,p322,p323,p324,p325,p326,p327,p328,p329, p330,p331,p332,p333,p334,p335,p336,p337,p338,p339, p340,p341,p342,p343,p344,p345,p346,p347,p348,p349, p350,p351,p352,p353,p354,p355,p356,p357,p358,p359, p360,p361,p362,p363,p364,p365,p366,p367,p368,p369, p370,p371,p372,p373,p374,p375,p376,p377,p378,p379, p380,p381,p382,p383,p384,p385,p386,p387,p388,p389, p390,p391,p392,p393,p394,p395,p396,p397,p398,p399}; std::vector<TimeType> times_; ////////////////////////////////////////////////////////////////////////////////// // create a new stack for each trial setup::Stack stack; stack.clear(); const Code particle{Code::Electron}; const HEPMassType pmass{get_mass(particle)}; // construct an energy // move in the for loop const HEPEnergyType E0{11.4_MeV}; // create a radio process instance using CoREAS RadioProcess<decltype(detector), CoREAS<decltype(detector), decltype(StraightPropagator(env))>, decltype(StraightPropagator(env))> coreas(detector, env); // loop over all the tracks except the last one for (size_t i = 1; i <= 399; i++) { TimeType t {(points_[i] - points_[i-1]).getNorm() / (0.999 * constants::c)}; VelocityVector v { (points_[i] - points_[i-1]) / t }; auto beta {v / constants::c}; auto gamma {E0/pmass}; auto plab {beta * pmass * gamma}; Line l {points_[i-1],v}; StraightTrajectory track {l,t}; auto particle1{stack.addParticle(std::make_tuple(particle, E0, plab, points_[i-1], t))}; //TODO: plab is inconsistent coreas.doContinuous(particle1,track,true); } // get the last track TimeType t {(points_[0] - points_[399]).getNorm() / (0.999 * constants::c)}; VelocityVector v { (points_[0] - points_[399]) / t }; auto beta {v / constants::c}; auto gamma {E0/pmass}; auto plab {beta * pmass * gamma}; Line l {points_[399],v}; StraightTrajectory track {l,t}; auto particle1{stack.addParticle(std::make_tuple(particle, E0, plab, points_[399], t))}; coreas.doContinuous(particle1,track,true); // get the output coreas.writeOutput(); } SECTION("Synchrotron radiation 2") { // create a suitable environment /////////////////////////////////////////////////// using IModelInterface = IRefractiveIndexModel<IMediumPropertyModel<IMagneticFieldModel<IMediumModel>>>; using AtmModel = UniformRefractiveIndex<MediumPropertyModel<UniformMagneticField<HomogeneousMedium <IModelInterface>>>>; using EnvType = Environment<AtmModel>; EnvType env; CoordinateSystemPtr const& rootCS = env.getCoordinateSystem(); // get the center point Point const center{rootCS, 0_m, 0_m, 0_m}; // a refractive index for the vacuum const double ri_{1}; // the constant density const auto density{19.2_g / cube(1_cm)}; // the composition we use for the homogeneous medium NuclearComposition const Composition(std::vector<Code>{Code::Nitrogen}, std::vector<float>{1.f}); // create magnetic field vector Vector B1(rootCS, 0_T, 0_T, 0.3809_T); // create a Sphere for the medium auto Medium = EnvType::createNode<Sphere>( center, 1_km * std::numeric_limits<double>::infinity()); // set the environment properties auto const props = Medium->setModelProperties<AtmModel>(ri_, Medium::AirDry1Atm, B1, density, Composition); // bind things together env.getUniverse()->addChild(std::move(Medium)); // now create antennas and detectors///////////////////////////////////////////// // the antennas location const auto point1{Point(rootCS, 200_m, 0_m, 0_m)}; // const auto point1{Point(rootCS, 30000_m, 0_m, 0_m)}; // const auto point2{Point(rootCS, 5000_m, 100_m, 0_m)}; // const auto point3{Point(rootCS, -100_m, -100_m, 0_m)}; // const auto point4{Point(rootCS, -100_m, 100_m, 0_m)}; // create times for the antenna // const TimeType t1{0.998e-4_s}; // const TimeType t2{1.0000e-4_s}; // const InverseTimeType t3{1e+11_Hz}; const TimeType t1{0_s}; const TimeType t2{1e-6_s}; const InverseTimeType t3{1e+9_Hz}; // create 4 cool antennas TimeDomainAntenna ant1("cool antenna", point1, t1, t2, t3); // TimeDomainAntenna ant2("cooler antenna", point2, t1, t2, t3); // TimeDomainAntenna ant3("coolest antenna", point3, t1, t2, t3); // TimeDomainAntenna ant4("No, I am the coolest antenna", point4, t1, t2, t3); // construct a radio detector instance to store our antennas AntennaCollection<TimeDomainAntenna> detector; // add the antennas to the detector detector.addAntenna(ant1); // detector.addAntenna(ant2); // detector.addAntenna(ant3); // detector.addAntenna(ant4); ////////////////////////////////////////////////////////////////////////////////// // create a new stack for each trial setup::Stack stack; stack.clear(); const Code particle{Code::Electron}; const HEPMassType pmass{get_mass(particle)}; // construct an energy // move in the for loop const HEPEnergyType E0{11.4_MeV}; // create a radio process instance using CoREAS or ZHS RadioProcess<decltype(detector), CoREAS<decltype(detector), decltype(StraightPropagator(env))>, decltype(StraightPropagator(env))> coreas(detector, env); // loop over all the tracks except the last one int const n_points {1000}; LengthType const radius {100_m}; for (size_t i = 0; i <= n_points; i++) { Point const point_1(rootCS,{radius*cos(M_PI*2*i/n_points),radius*sin(M_PI*2*i/n_points), 0_m}); Point const point_2(rootCS,{radius*cos(M_PI*2*(i+1)/n_points),radius*sin(M_PI*2*(i+1)/n_points), 0_m}); TimeType t {(point_2 - point_1).getNorm() / (0.999 * constants::c)}; VelocityVector v { (point_2 - point_1) / t }; auto beta {v / constants::c}; auto gamma {E0/pmass}; auto plab {beta * pmass * gamma}; Line l {point_1,v}; StraightTrajectory track {l,t}; auto particle1{stack.addParticle(std::make_tuple(particle, E0, plab, point_1, t))}; coreas.doContinuous(particle1,track,true); stack.clear(); } // get the output coreas.writeOutput(); } SECTION("TimeDomainAntenna") { // create an environment so we can get a coordinate system using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>; EnvType env6; using UniRIndex = UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>; // the antenna location const auto point1{Point(env6.getCoordinateSystem(), 1_m, 2_m, 3_m)}; const auto point2{Point(env6.getCoordinateSystem(), 4_m, 5_m, 6_m)}; // get a coordinate system const CoordinateSystemPtr rootCS6 = env6.getCoordinateSystem(); auto Medium6 = EnvType::createNode<Sphere>( Point{rootCS6, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity()); auto const props6 = Medium6->setModelProperties<UniRIndex>( 1, 1_kg / (1_m * 1_m * 1_m), NuclearComposition( std::vector<Code>{Code::Nitrogen}, std::vector<float>{1.f})); env6.getUniverse()->addChild(std::move(Medium6)); // create times for the antenna const TimeType t1{10_s}; const TimeType t2{10_s}; const InverseTimeType t3{1/1_s}; const TimeType t4{11_s}; // check that I can create an antenna at (1, 2, 3) TimeDomainAntenna ant1("antenna_name", point1, t1, t2, t3); TimeDomainAntenna ant2("antenna_name2", point2, t4, t2, t3); // assert that the antenna name is correct REQUIRE(ant1.getName() == "antenna_name"); REQUIRE(ant2.getName() == "antenna_name2"); // and check that the antenna is at the right location REQUIRE((ant1.getLocation() - point1).getNorm() < 1e-12 * 1_m); REQUIRE((ant2.getLocation() - point2).getNorm() < 1e-12 * 1_m); // construct a radio detector instance to store our antennas AntennaCollection<TimeDomainAntenna> detector; // add this antenna to the process detector.addAntenna(ant1); detector.addAntenna(ant2); CHECK(detector.size() == 2); // get a unit vector Vector<dimensionless_d> v1(rootCS6, {0, 0, 1}); QuantityVector<ElectricFieldType::dimension_type> v11{10_V / 1_m, 10_V / 1_m, 10_V / 1_m}; Vector<dimensionless_d> v2(rootCS6, {0, 1, 0}); QuantityVector<ElectricFieldType::dimension_type> v22{20_V / 1_m, 20_V / 1_m, 20_V / 1_m}; // use receive methods ant1.receive(15_s, v1, v11); ant2.receive(16_s, v2, v22); // use getWaveform() method auto [t111, E1] = ant1.getWaveform(); CHECK(E1(5,0) - 10 == 0); auto [t222, E2] = ant2.getWaveform(); CHECK(E2(5,0) -20 == 0); // use the receive method in a for loop. It works now! for (auto& xx : detector.getAntennas()) { xx.receive(15_s, v1, v11); } // t & E are correct! uncomment to see them // for (auto& xx : detector.getAntennas()) { // auto [t,E] = xx.getWaveform(); // std::cout << t << std::endl; // std::cout << " ... "<< std::endl; // std::cout << E << std::endl; // std::cout << " ... "<< std::endl; // } // check output files. It works, uncomment to see. // int i = 1; // for (auto& antenna : detector.getAntennas()) { // // auto [t,E] = antenna.getWaveform(); // auto c0 = xt::hstack(xt::xtuple(t,E)); // std::ofstream out_file ("antenna" + to_string(i) + "_output.csv"); // xt::dump_csv(out_file, c0); // out_file.close(); // ++i; // // } // check reset method for antennas. Uncomment to see they are zero // ant1.reset(); // ant2.reset(); // // std::cout << ant1.waveformE_ << std::endl; // std::cout << ant2.waveformE_ << std::endl; // // std::cout << " ... "<< std::endl; // std::cout << " ... "<< std::endl; // check reset method for antenna collection. Uncomment to see they are zero // detector.reset(); // for (auto& xx : detector.getAntennas()) { // std::cout << xx.waveformE_ << std::endl; // std::cout << " ... "<< std::endl; // } } // check that I can create working Straight Propagators in different environments SECTION("Straight Propagator w/ Uniform Refractive Index") { // create an environment with uniform refractive index of 1 using UniRIndex = UniformRefractiveIndex<HomogeneousMedium<IRefractiveIndexModel<IMediumModel>>>; using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>; EnvType env; // get a coordinate system const CoordinateSystemPtr rootCS = env.getCoordinateSystem(); auto Medium = EnvType::createNode<Sphere>( Point{rootCS, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity()); auto const props = Medium->setModelProperties<UniRIndex>( 1, 1_kg / (1_m * 1_m * 1_m), NuclearComposition( std::vector<Code>{Code::Nitrogen}, std::vector<float>{1.f})); env.getUniverse()->addChild(std::move(Medium)); // get some points Point p0(rootCS, {0_m, 0_m, 0_m}); // Point p1(rootCS, {0_m, 0_m, 1_m}); // Point p2(rootCS, {0_m, 0_m, 2_m}); // Point p3(rootCS, {0_m, 0_m, 3_m}); // Point p4(rootCS, {0_m, 0_m, 4_m}); // Point p5(rootCS, {0_m, 0_m, 5_m}); // Point p6(rootCS, {0_m, 0_m, 6_m}); // Point p7(rootCS, {0_m, 0_m, 7_m}); // Point p8(rootCS, {0_m, 0_m, 8_m}); // Point p9(rootCS, {0_m, 0_m, 9_m}); Point p10(rootCS, {0_m, 0_m, 10_m}); // get a unit vector Vector<dimensionless_d> v1(rootCS, {0, 0, 1}); Vector<dimensionless_d> v2(rootCS, {0, 0, -1}); // // get a geometrical path of points // Path P1({p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10}); // construct a Straight Propagator given the uniform refractive index environment StraightPropagator SP(env); // store the outcome of the Propagate method to paths_ auto const paths_ = SP.propagate(p0, p10, 1_m); // perform checks to paths_ components for (auto const& path : paths_) { CHECK((path.propagation_time_ / 1_s) - ((34_m / (3 * constants::c)) / 1_s) == Approx(0).margin(absMargin)); CHECK(path.average_refractive_index_ == Approx(1)); CHECK(path.refractive_index_source_ == Approx(1)); CHECK(path.refractive_index_destination_ == Approx(1)); CHECK(path.emit_.getComponents() == v1.getComponents()); CHECK(path.receive_.getComponents() == v2.getComponents()); CHECK(path.R_distance_ == 10_m); // CHECK(std::equal(P1.begin(), P1.end(), path.points_.begin(),[] // (Point a, Point b) { return (a - b).norm() / 1_m < 1e-5;})); //TODO:THINK ABOUT THE POINTS IN THE SIGNALPATH.H // std::cout << "path.total_time_: " << path.total_time_ << std::endl; // std::cout << "path.average_refractive_index_: " << path.average_refractive_index_ << std::endl; // std::cout << "path.emit_: " << path.emit_.getComponents() << std::endl; // std::cout << "path.R_distance_: " << path.R_distance_ << std::endl; } CHECK(paths_.size() == 1); } SECTION("Straight Propagator w/ Exponential Refractive Index") { // logging::set_level(logging::level::info); // corsika_logger->set_pattern("[%n:%^%-8l%$] custom pattern: %v"); // create an environment with exponential refractive index (n_0 = 1 & lambda = 0) using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium <IRefractiveIndexModel<IMediumModel>>>; using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>; EnvType env1; //get another coordinate system const CoordinateSystemPtr rootCS1 = env1.getCoordinateSystem(); auto Medium1 = EnvType::createNode<Sphere>( Point{rootCS1, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity()); auto const props1 = Medium1 ->setModelProperties<ExpoRIndex>( 1, 0 / 1_m, 1_kg / (1_m * 1_m * 1_m), NuclearComposition( std::vector<Code>{Code::Nitrogen}, std::vector<float>{1.f})); env1.getUniverse()->addChild(std::move(Medium1)); // get some points Point pp0(rootCS1, {0_m, 0_m, 0_m}); // Point pp1(rootCS1, {0_m, 0_m, 1_m}); // Point pp2(rootCS1, {0_m, 0_m, 2_m}); // Point pp3(rootCS1, {0_m, 0_m, 3_m}); // Point pp4(rootCS1, {0_m, 0_m, 4_m}); // Point pp5(rootCS1, {0_m, 0_m, 5_m}); // Point pp6(rootCS1, {0_m, 0_m, 6_m}); // Point pp7(rootCS1, {0_m, 0_m, 7_m}); // Point pp8(rootCS1, {0_m, 0_m, 8_m}); // Point pp9(rootCS1, {0_m, 0_m, 9_m}); Point pp10(rootCS1, {0_m, 0_m, 10_m}); // get a unit vector Vector<dimensionless_d> vv1(rootCS1, {0, 0, 1}); Vector<dimensionless_d> vv2(rootCS1, {0, 0, -1}); // construct a Straight Propagator given the exponential refractive index environment StraightPropagator SP1(env1); // store the outcome of Propagate method to paths1_ auto const paths1_ = SP1.propagate(pp0, pp10, 1_m); // perform checks to paths1_ components (this is just a sketch for now) for (auto const& path :paths1_) { CHECK( (path.propagation_time_ / 1_s) - ((34_m / (3 * constants::c)) / 1_s) == Approx(0).margin(absMargin) ); CHECK( path.average_refractive_index_ == Approx(1) ); CHECK(path.refractive_index_source_ == Approx(1)); CHECK(path.refractive_index_destination_ == Approx(1)); CHECK( path.emit_.getComponents() == vv1.getComponents() ); CHECK( path.receive_.getComponents() == vv2.getComponents() ); CHECK( path.R_distance_ == 10_m ); } CHECK( paths1_.size() == 1 ); /* * A second environment with another exponential refractive index */ // create an environment with exponential refractive index (n_0 = 2 & lambda = 2) using ExpoRIndex = ExponentialRefractiveIndex<HomogeneousMedium <IRefractiveIndexModel<IMediumModel>>>; using EnvType = Environment<IRefractiveIndexModel<IMediumModel>>; EnvType env2; //get another coordinate system const CoordinateSystemPtr rootCS2 = env2.getCoordinateSystem(); auto Medium2 = EnvType::createNode<Sphere>( Point{rootCS2, 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity()); auto const props2 = Medium2 ->setModelProperties<ExpoRIndex>( 2, 2 / 1_m, 1_kg / (1_m * 1_m * 1_m), NuclearComposition( std::vector<Code>{Code::Nitrogen}, std::vector<float>{1.f})); env2.getUniverse()->addChild(std::move(Medium2)); // get some points Point ppp0(rootCS2, {0_m, 0_m, 0_m}); Point ppp10(rootCS2, {0_m, 0_m, 10_m}); // get a unit vector Vector<dimensionless_d> vvv1(rootCS2, {0, 0, 1}); Vector<dimensionless_d> vvv2(rootCS2, {0, 0, -1}); // construct a Straight Propagator given the exponential refractive index environment StraightPropagator SP2(env2); // store the outcome of Propagate method to paths1_ auto const paths2_ = SP2.propagate(ppp0, ppp10, 1_m); // perform checks to paths1_ components (this is just a sketch for now) for (auto const& path :paths2_) { CHECK( (path.propagation_time_ / 1_s) - ((3.177511688_m / (3 * constants::c)) / 1_s) == Approx(0).margin(absMargin) ); CHECK( path.average_refractive_index_ == Approx(0.210275935) ); CHECK(path.refractive_index_source_ == Approx(2)); // CHECK(path.refractive_index_destination_ == Approx(0.0000000041)); CHECK( path.emit_.getComponents() == vvv1.getComponents() ); CHECK( path.receive_.getComponents() == vvv2.getComponents() ); CHECK( path.R_distance_ == 10_m ); } CHECK( paths2_.size() == 1 ); } } // END: TEST_CASE("Radio", "[processes]")